Unimolecular amphiphilic nanoreactors with a poly(4-vinyl-N-methylpyridinium iodide) (P4VPMe I ) polycationic outer shell and two different architectures (core-cross-linked micelles, CCM, and nanogels, NG), with narrow size distributions around 130-150 nm in diameter, were synthesized by RAFT polymerization from an R -4VPMe I -b-S -SC(S)SPr macroRAFT agent by either chain extension with a long (300 monomer units) hydrophobic polystyrene-based block followed by cross-linking with diethylene glycol dimethacrylate (DEGDMA) for the CCM particles, or by simultaneous chain extension and cross-linking for the NG particles. A core-anchored triphenylphosphine (TPP) ligand functionality was introduced by using 4-diphenylphosphinostyrene (DPPS) as a comonomer (5-20 % mol mol ) in the chain extension (for CCM) or chain extension/cross-linking (for NG) step. The products were directly obtained as stable colloidal dispersions in water (latexes). After loading with [RhCl(COD)] to yield [RhCl(COD)(TPP@CCM)] or [RhCl(COD)(TPP@NG)], respectively, the polymers were used as polymeric nanoreactors in Rh-catalyzed aqueous biphasic hydrogenation of the model substrates styrene and 1-octene, either neat (for styrene) or in an organic solvent (toluene or 1-nonanol). All hydrogenations were rapid (TOF up to 300 h ) at 25 °C and 20 bar of H pressure, the biphasic mixture rapidly decanted at the end of the reaction (<2 min), the Rh loss was negligible (<0.1 ppm in the recovered organic phase), and the catalyst phase could be recycled 10 times without significant loss of catalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202004689DOI Listing

Publication Analysis

Top Keywords

chain extension
12
core-cross-linked micelles
8
polycationic outer
8
outer shell
8
triphenylphosphine-functionalized core-cross-linked
4
micelles nanogels
4
nanogels polycationic
4
shell synthesis
4
synthesis application
4
application rhodium-catalyzed
4

Similar Publications

Modifying the Resistant Starch Content and the Retrogradation Characteristics of Potato Starch Through High-Dose Gamma Irradiation.

Gels

November 2024

State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.

Potato starch is widely utilized in the food industry. Gamma irradiation is a cost-effective and environmentally friendly method for starch modification. Nevertheless, there is a scarcity of comprehensive and consistent knowledge regarding the physicochemical characteristics of high-dose gamma-irradiated potato starch, retrogradation properties in particular.

View Article and Find Full Text PDF

Ubiquitination is a dynamic post-translational modification governing protein abundance, function, and localization in eukaryotes. The Ubiquitin protein is conjugated to lysine residues of target proteins, but can also repeatedly be ubiquitinated itself, giving rise to a complex code of ubiquitin chains with different linkage types. To enable studying the cellular dynamics of linkage-specific ubiquitination, light-activatable polyubiquitin chain formation is reported here.

View Article and Find Full Text PDF

In this study, segmented hyperbranched copolymers with degradable and chain extendable cross-linker branch points were synthesized via green light-activated photoiniferter copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and a trithiocarbonate-derived dimethacrylate. A series of segmented hyperbranched copolymers with different degrees of branching were synthesized by changing the feed ratio of PEGMA to cross-linker to chain transfer agent. The segmented hyperbranched copolymers could be degraded into linear polymer chains by removing the trithocarbonate groups, which provides fundamental insights into the growth of primary chains during photoiniferter copolymerization.

View Article and Find Full Text PDF

Peptoids (N-substituted glycines) are a class of sequence-defined synthetic peptidomimetic polymers with applications including drug delivery, catalysis, and biomimicry. Classical molecular simulations have been used to predict and understand the conformational dynamics of single chains and their self-assembly into morphologies including sheets, tubes, spheres, and fibrils. The CGenFF-NTOID model based on the CHARMM General Force Field has demonstrated success in accurate all-atom molecular modeling of peptoid structure and thermodynamics.

View Article and Find Full Text PDF

Treatment of long finger metacarpophalangeal arthritis using HAPY® pyrocarbon interposition implants: a study of 34 cases.

Hand Surg Rehabil

December 2024

Institut Main Nantes Atlantique, Boulevard Charles-Gautier, 44800 Saint-Herblain, France. Electronic address:

Introduction: Destruction of the metacarpophalangeal joint can result in disabling pain and stiffness. Several therapeutic options are available, including pyrocarbon interposition implants. The primary endpoint of this study was assessment of clinical and radiographic outcomes in 34 patients treated with HAPY® pyrocarbon interposition implants (Tornier, Grenoble, France) with a minimum follow-up of 3 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!