Epigenetic reprogramming during perinatal germ cell development is essential for genomic imprinting and cell differentiation; however, the actors of this key event and their dynamics are poorly understood in rats. Our study aimed to characterize the expression patterns of epigenetic modifiers and the changes in histone modifications in rat gonocytes at the time of de novo DNA methylation. Using transgenic rats expressing Green Fluorescent Protein (GFP) specifically in germ cells, we purified male gonocytes by fluorescent activated cell sorting at various stages of perinatal development and established the transcriptomic profile of 165 epigenetic regulators. Using immunofluorescence on gonad sections, we tracked six histone modifications in rat male and female perinatal germ cells over time, including methylation of histone H3 on lysines 27, 9, and 4; ubiquitination of histone H2A on lysine119; and acetylation of histone H2B on lysine 20. The results revealed the dynamics in the expression of ten-eleven translocation enzymes and DNA methyltransferases in male gonocytes at the time of de novo DNA methylation. Moreover, our transcriptomic data indicate a decrease in histone ubiquitination and methylation coinciding with the beginning of de novo DNA methylation. Decreases in H2AK119Ub and H3K27me3 were further confirmed by immunofluorescence in the male germ cells but were not consistent for all H3 methylation sites examined. Together, our data highlighted transient chromatin remodeling involving histone modifications during de novo DNA methylation. Further studies addressing how these dynamic changes in histone posttranslational modifications could guide de novo DNA methylation will help explain the complex establishment of the male germ cell epigenome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/biolre/ioaa206 | DOI Listing |
Acta Neuropathol
January 2025
Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Genetics Institute, Rambam Health Care Campus, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. Electronic address:
Pathogenic heterozygous variants in CHD4 cause Sifrim-Hitz-Weiss syndrome, a neurodevelopmental disorder associated with brain anomalies, heart defects, macrocephaly, hypogonadism, and additional features with variable expressivity. Most individuals have non-recurrent missense variants, complicating variant interpretation. A few were reported with truncating variants, and their role in disease is unclear.
View Article and Find Full Text PDFPlant Cell
January 2025
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
Plant architecture greatly contributes to grain yield, but the epigenetic regulation of plant architecture remains elusive. Here, we identified the maize (Zea mays L.) mutant plant architecture 1 (par1), which shows reduced plant height, shorter and narrower leaves, and larger leaf angles than the wild type.
View Article and Find Full Text PDFCureus
December 2024
Laboratory of Genomic Medicine, GHC GENETICS SK, Comenius University Science Park, Bratislava, SVK.
X-linked severe combined immunodeficiency disease (X-SCID) is a form of inborn errors of immunity (IEI) associated with causal DNA variants of the gene. Patients with X-SCID are characterized by a combination of cellular and humoral immunodeficiencies associated with increased susceptibility to infections. The presented cases constituted two unrelated male patients from the Slovak population.
View Article and Find Full Text PDFAPMIS
January 2025
Department of Pathology, Herlev and Gentofte University Hospital, Herlev, Denmark.
The ovarian oncobiome is subject to increasing scientific focus, but a potential link between bacterial dysbiosis and ovarian carcinogenesis remains controversial. Our primary aim was to characterize the bacterial microbiota in epithelial ovarian cancer samples. Secondarily, we aimed to compare results from the bacterial microbiota in formalin-fixed, paraffin-embedded ovarian tissue samples from 194 patients with epithelial ovarian cancer, fallopian tube tissue samples from 16 patients with serous tubal intraepithelial carcinomas and in benign fallopian tube tissue samples from 25 patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!