A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploration of the Effects of Substrate Stiffness on Biological Responses of Neural Cells and Their Mechanisms. | LitMetric

Substrate stiffness, as a critical mechanical factor, has been proven to be an important regulator of biological responses, cellular functions, and disease occurrence. However, the effects of substrate stiffness on the phenotypes and drug responses of neural cells remain largely unknown. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses were employed to establish the mechanical microenvironment of tissues of different organs. We studied the influences of stiffness on neural cell phenotypes, including cell viability, cell cycle, cytoskeleton structures, cell stiffness, and drug responses of neural cells for hormesis and therapeutic efficacy in neurodegenerative disorders (NDD). The results showed that the greater the range of maximum stimulatory responses, the bigger the width of the stimulatory dosage and the higher the range of maximum neuroprotective activities of hormetic chemicals in neural cells grown on the soft substrate commensurable to the stiffness of the brain, indicating that neural cells on a rigid substrate are resistant to hormetic and neuroprotective effects of hormetic chemicals against 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD) model. The sensitivity of neural cells on the soft substrate to drug response was attributed to the increased cell viability rate, cell cycle progression, actin stress fibers, focal adhesion formation, and decreased cell stiffness. The promoting effect of the soft substrate and the enhanced hormetic and neuroprotective effect of hormetic chemicals on soft substrates in PC12 cells were confirmed to be mediated by the upregulated EGFR/PI3K/AKT signaling pathway by RNA-Seq and bioinformatics analysis. This study demonstrates that the biomechanical properties of the neural microenvironment play important roles in cell phenotypes and drug responses of neural cells in vitro and suggests that substrate stiffness should be considered in the anti-NDD drug design and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726759PMC
http://dx.doi.org/10.1021/acsomega.0c04279DOI Listing

Publication Analysis

Top Keywords

neural cells
28
substrate stiffness
16
responses neural
16
drug responses
12
hormetic chemicals
12
soft substrate
12
neural
9
substrate
8
effects substrate
8
stiffness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!