A ternary photocatalyst, FeO-loaded g-CN/C-layered composite (g-CN/C/FeO) was fabricated by a facile sonication and in situ precipitation technique. Carbon nanosheets were prepared using the remaining non-metallic components of waste printed circuit boards as carbon sources. In this hybrid structure, g-CN was immobilized on the surfaces of carbon nanosheets to form a layered composite, and 10-15 nm FeO nanoparticles are uniformly deposited on the surface of the composite material. The photocatalytic performance of the catalyst was studied by degrading tetracycline (TC) under simulated sunlight. The results showed that the photoactivity of the g-CN/C/FeO composite to TC was significantly enhanced, and the degradation rate was 10.07 times higher than that of pure g-CN, which was attributed to FeO nanoparticles and carbon nanosheets. Carbon sheets with good conductivity are an excellent electron transporter, which promotes the separation of photogenerated carriers and the FeO nanoparticles can utilize electrons effectively as a center of oxidation-reduction. Moreover, a possible photocatalytic mechanism for the excellent photocatalytic performance was proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726751 | PMC |
http://dx.doi.org/10.1021/acsomega.0c03905 | DOI Listing |
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFSci Total Environ
January 2025
Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124 China. Electronic address:
Photocatalytic CO reduction technology plays a significant role in the energy and environmental sectors, highlighting the necessity for developing high-efficiency and stable catalysts. In this study, a novel photocatalyst, xNiCoO/CN (x = 1, 3, and 5 wt%), was synthesized by depositing zeolitic imidazolate framework-67 (ZIF-67)-derived nickel cobaltate (NiCoO) hollow nanocages onto porous graphitic carbon nitride (g-CN, CN) nanosheets for photocatalytic CO reduction. Under visible light irradiation, the resulting 3NiCoO/CN photocatalyst demonstrated exceptional CO yields of up to 2879.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Haidian District, Beijing 100083, China.
Poly(glycolic acid) (PGA) is a rapidly degradable polymer mainly used in medical applications, attributed to its relatively high cost. Reducing its price will boost its utilization in a wider range of application fields, such as gas barriers and shale gas extraction. This article presents a strategy that utilizes recycled PGA as a raw material alongside typical carbon nanomaterials, such as graphene oxide nanosheets (GO) and carbon nanotubes (CNTs), to produce low-cost, fully degradable yarns via electrospinning and twisting techniques.
View Article and Find Full Text PDFBioresour Technol
January 2025
Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065 PR China. Electronic address:
Theanode enables raised microbial fuel cells (MFCs) performance via in-situ growth electroactive material. However, the role of fabricated microstructures in electroactive bacteria loading and extracellular electron transfer (EET) has been paid less attention. Here, MoS2 nanosheets are custom grown on carbon cloth to construct anode models with diverse surface microstructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!