While in young adults (YAs) the underlying neural mechanisms of motor learning are well-studied, studies on the involvement of the somatosensory system during motor skill learning in older adults (OAs) remain sparse. Therefore, the aim of the present study was to investigate motor learning-induced neuroplasticity in the primary somatosensory cortex (S1) in YAs and OAs. Somatosensory evoked potentials (SEPs) were used to quantify somatosensory activation prior and immediately after motor skill learning in 20 right-handed healthy YAs (age range: 19-35 years) and OAs (age range: 57-76 years). Participants underwent a single session of a 30-min co-contraction task of the abductor pollicis brevis (APB) and deltoid muscle. To assess the effect of motor learning, muscle onset asynchrony (MOA) between the onsets of the contractions of both muscles was measured using electromyography monitoring. In both groups, MOA shortened significantly during motor learning, with YAs showing bigger reductions. No changes were found in SEP amplitudes after motor learning in both groups. However, a correlation analysis revealed an association between baseline SEP amplitudes of the N20/P25 and N30 SEP component and the motor learning slope in YAs such that higher amplitudes are related to higher learning. Hence, the present findings suggest that SEP amplitudes might serve as a predictor of individual motor learning success, at least in YAs. Additionally, our results suggest that OAs are still capable of learning complex motor tasks, showing the importance of motor training in higher age to remain an active part of our society as a prevention for care dependency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7723828PMC
http://dx.doi.org/10.3389/fnagi.2020.596438DOI Listing

Publication Analysis

Top Keywords

motor learning
24
motor
12
motor skill
12
sep amplitudes
12
learning
10
primary somatosensory
8
somatosensory cortex
8
older adults
8
skill learning
8
age range
8

Similar Publications

Adaptive deep brain stimulation (DBS) provides individualized therapy for people with Parkinson's disease (PWP) by adjusting the stimulation in real-time using neural signals that reflect their motor state. Current algorithms, however, utilize condensed and manually selected neural features which may result in a less robust and biased therapy. In this study, we propose Neural-to-Gait Neural network (N2GNet), a novel deep learning-based regression model capable of tracking real-time gait performance from subthalamic nucleus local field potentials (STN LFPs).

View Article and Find Full Text PDF

The Trail of axonal protein Synthesis: Origins and current functional Landscapes.

Neuroscience

January 2025

Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay. Electronic address:

Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions.

View Article and Find Full Text PDF

Background: Limited evidence exists regarding the meaningfulness of symptoms experienced in early Parkinson's disease (PD).

Objectives: To identify the most bothersome symptoms experienced by people with early PD, leveraging data from the Parkinson's Disease Patient Report of Problems (PD-PROP) questionnaire within the Fox Insight Study.

Methods: Individuals with a self-reported diagnosis of PD completed the PD-PROP questionnaire, reporting up to five most bothersome symptoms.

View Article and Find Full Text PDF

Hand movements frequently occur with speech. The extent to which the memories that guide co-speech hand movements are tied to the speech they occur with is unclear. Here, we paired the acquisition of a new hand movement with speech.

View Article and Find Full Text PDF

Motor synergy and energy efficiency emerge in whole-body locomotion learning.

Sci Rep

January 2025

Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.

Humans exploit motor synergies for motor control; however, how they emerge during motor learning is not clearly understood. Few studies have dealt with the computational mechanism for generating synergies. Previously, optimal control generated synergistic motion for the upper limb; however, it has not yet been applied to the high-dimensional whole-body system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!