Purpose: Breast cancer (BC) is the most common cancer in women. Emerging evidence has demonstrated that lncRNAs play an important role in BC. The objective of this study was to investigate the impact of the long non-coding RNA (lncRNA), H19/miRNA-130a-3P/special AT-rich sequence-binding protein-1 (SATB1) axis on BC progression.

Materials And Methods: Expression of lncRNA and RNA was quantified via RT-qPCR. CCK-8, colony formation, wound healing, transwell, and flow cytometric analyses were used to analyze the proliferation, migration, invasion and apoptosis of cells. A dual-luciferase reporter assay and a RNA immunoprecipitation (RIP) assay were used to assess molecular binding. Protein levels were measured by Western blotting. The function of the lncRNA H19 (hereafter referred to as H19) was examined by xenotransplantation.

Results: We demonstrated that H19 expression was higher in cancer tissues and cancer cell lines than in adjacent non-tumor tissues and normal cell lines, respectively. H19 silencing inhibited the proliferation, migration and invasion of BC cells, and induced apoptosis. In addition, H19 directly bound to miR-130a-3p and downregulated its expression. We further demonstrated that H19 sponged miRNA-130a-3p, which resulted in SATB1 upregulation, thus promoting BC progression. Silencing of H19 substantially suppressed BC tumorigenesis in vivo.

Conclusion: Our data uncovered a novel mechanism of BC progression based on the H19-miR-130a-3p-SATB1 axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733342PMC
http://dx.doi.org/10.2147/OTT.S280142DOI Listing

Publication Analysis

Top Keywords

h19
8
breast cancer
8
proliferation migration
8
migration invasion
8
demonstrated h19
8
cell lines
8
cancer
5
h19 knockdown
4
knockdown suppresses
4
suppresses proliferation
4

Similar Publications

Article Synopsis
  • The study focuses on the role of miR-483-5p in regulating the overexpression of IGF2 and H19, which are linked to hepatocellular carcinoma (HCC).
  • miR-483-5p enhances IGF2 and H19 expression by binding to their enhancer, activating transcription, and promoting new interactions between the enhancer and gene promoters through chromatin loops.
  • The research highlights that MED1 is crucial in this process, influencing both chromatin structure and the aggressive behavior of HCC cells, indicating potential targets for therapeutic interventions.
View Article and Find Full Text PDF

Platinum resistance is a common cause of chemotherapy failure in lung adenocarcinoma (LUAD). Competing endogenous RNAs (ceRNAs), which function by competitively binding to miRNAs, can influence drug response. However, the regulatory mechanisms of ceRNAs underlying chemoresistance in LUAD remain largely unknown.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.

View Article and Find Full Text PDF

Purpose Of The Review: This review aims to explore the pivotal role of long non-coding RNAs (lncRNAs) as epigenetic regulators in the pathogenesis of multiple myeloma (MM). Additionally, we have portrayed the dual role of lncRNAs in the epigenetic landscape of MM pathobiology.

Recent Findings: In MM, lncRNAs are pivotal for proliferation, progression, and drug resistance by acting as miRNA sponges, regulating mRNA activity through microRNA recognition elements (MREs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!