The dynamics of the interaction between Bdellovibrio bacteriovorus and the host bacterium was found to depend on temperature. The maximum rate of infection was found at 37 degrees C. The maximum yield of Bdellovibrio and the maximum lysis of the host cells occurred at 22.5 degrees C. The cardinal points, at which no interaction was observed, have been determined. It is concluded that B. bacteriovorus belongs to mesophilis microorganisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

dynamics interaction
8
interaction bdellovibrio
8
bdellovibrio bacteriovorus
8
bacteriovorus host
8
[effect temperature
4
temperature dynamics
4
host bacteria]
4
bacteria] dynamics
4
host bacterium
4
bacterium depend
4

Similar Publications

Developing a reliable procedure for the growth of III-V nanowires (NW) on silicon (Si) substrates remains a significant challenge, as current methods rely on trial-and-error approaches with varying interpretations of critical process steps such as sample preparation, Au-Si alloy formation in the growth reactor, and nanowire alignment. Addressing these challenges is essential for enabling high-performance electronic and optoelectronic devices that combine the superior properties of III-V NW semiconductors with the well-established Si-based technology. Combining conventional scalable growth methods, such as Metalorganic Chemical Vapor Deposition (MOCVD) with in situ characterization using Environmental Transmission Electron Microscopy (ETEM-MOCVD) enables a deeper understanding of the growth dynamics, if that knowledge is transferable to the scalable processes.

View Article and Find Full Text PDF

Background: Recent advancements in artificial intelligence (AI) have changed the care processes in mental health, particularly in decision-making support for health care professionals and individuals with mental health problems. AI systems provide support in several domains of mental health, including early detection, diagnostics, treatment, and self-care. The use of AI systems in care flows faces several challenges in relation to decision-making support, stemming from technology, end-user, and organizational perspectives with the AI disruption of care processes.

View Article and Find Full Text PDF

A Set of Three Gd Spin Labels with Methanethiosulfonyl Groups for Bioconjugation Covering a Wide Range of EPR Line Widths.

J Org Chem

January 2025

Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.

Spin labels based on Gd complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of Gd complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful.

View Article and Find Full Text PDF

The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!