Objective: The aim of this study was to evaluate the effect of cervical cancer volume on PET/magnetic resonance (MR) texture heterogeneity.

Materials And Methods: We retrospectively analyzed the PET/MR images of 138 patients with pathologically diagnosed cervical squamous cell carcinoma, including 50 patients undergoing surgery and 88 patients receiving concurrent chemoradiotherapy. Fluorodeoxyglucose 18 (18FDG)-PET/MR examination were performed for each patient before treatment, and the PET and MR texture analysis were undertaken. The texture features of the tumor based on gray-level co-occurrence matrices were extracted, and the correlation between tumor texture features and volume parameters was analyzed using Spearman's rank correlation coefficient. Finally, the variation trend of tumor texture heterogeneity was analyzed as tumor volumes increased.

Results: PET texture features were highly correlated with metabolic tumor volume (MTV), including entropy-log2, entropy-log10, energy, homogeneity, dissimilarity, contrast, correlation, and the correlation coefficients (rs) were 0.955, 0.955, -0.897, 0.883, -0.881, -0.876, and 0.847 (P < 0.001), respectively. In the range of smaller MTV, the texture heterogeneity of energy, entropy-log2, and entropy-log10 increases with an increase in tumor volume, whereas the texture heterogeneity of homogeneity, dissimilarity, contrast, and correlation decreases with an increase in tumor volume. Only homogeneity, contrast, correlation, and dissimilarity had high correlation with tumor volume on MRI. The correlation coefficients (rs) were 0.76, -0.737, 0.644, and -0.739 (P < 0.001), respectively. The texture heterogeneity of MRI features that are highly correlated with tumor volume decreases with increasing tumor volume.

Conclusion: In the small tumor volume range, the heterogeneity variation trend of PET texture features is inconsistent as the tumor volume increases, but the variation trend of MRI texture heterogeneity is consistent, and MRI texture heterogeneity decreases as tumor volume increases. These results suggest that MRI is a better imaging modality when compared with PET in determining tumor texture heterogeneity in the small tumor volume range.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNM.0000000000001354DOI Listing

Publication Analysis

Top Keywords

tumor volume
36
texture heterogeneity
28
texture features
16
tumor
15
texture
14
volume
12
pet texture
12
tumor texture
12
variation trend
12
contrast correlation
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!