Objective: To explore how absorptive capacity has been conceptualized and measured in studies of innovation adoption in health care organizations.
Introduction: Current literature highlights the need to incorporate knowledge translation processes at the organizational and system level to enhance the adoption of new knowledge into practice. Absorptive capacity is a set of routines and processes characterized by knowledge acquisition, assimilation, transformation, and application. Absorptive capacity, a key concept in organizational learning theory, is thought to be critical to the adoption of new knowledge and innovations in organizations.
Inclusion Criteria: This scoping review will include primary studies (ie, experimental, quasi-experimental, observational, and qualitative study designs) and gray literature that broadly focus on the adoption of innovations at the organizational level in health care, and frame innovation adoption as processes that rely on organizational learning and absorptive or learning capacity.
Methods: Data sources will include comprehensive searches of electronic databases (eg, MEDLINE, Embase, PsycINFO, CINAHL, and Scopus), gray literature, and reference scanning of relevant studies. Study abstracts and full texts will be screened for eligibility by two reviewers, independently. Data extraction of relevant studies will also be done independently by two reviewers. All discrepancies will be addressed through further discussion or adjudicated by a third reviewer. Synthesis of the extracted data will focus on descriptive frequencies, counts, and thematic analysis and the results will be reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.11124/JBIES-20-00218 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India.
The development of devices capable of storing energy harnessed from photons is on the rise, owing to the increasing global energy demand for smart systems. The majority of reports in this field cover the use of integrated type devices, which houses a separate photovoltaic module and supercapacitor or battery. Herein, we are reporting a photocapacitor with a simple two-electrode design, capable of operating without a conventional electrolyte or metal ions.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China.
Background: Nano(micro)plastics (NMPs) and agrochemicals are ubiquitous pollutants. The small size and physicochemical properties of NMPs make them potential carriers for pollutants, affecting their bioavailability and impact on living organisms. However, little is known about their interactions in terrestrial ecosystems.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy. Electronic address:
Inspired by natural microbial cooperation, a co-culture approach was used to synthesize bacterial nanocellulose (BNC)-based nanocomposites for potential wound healing applications. By co-culturing either Komagataeibacter xylinus (K1G4) or the never tested strain K. rhaeticus (K2G46) with the hyaluronic acid (HA)-producer Lacticaseibacillus casei UMCC 2535, two BNC-HA nanocomposites were obtained (C1-K1 and C2-K2).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006 China. Electronic address:
Lithium (Li) metal anodes hold great promise for next-generation secondary batteries with high energy density. Unfortunately, several problems such as Li dendrite growth, low Coulombic efficiency and poor cycle life hinder the commercialization of Li metal anodes. Herein, we design a highly lithiophilic carbon cloth host modified with Sn-doped zinc oxide (ZnO) (ZnSn-CC) directly derived from a bimetallic ZnSn metal-organic framework (ZnSn-MOF), which boosts uniform Li plating/stripping during charge-discharge and effectively protects the Li metal anode.
View Article and Find Full Text PDFFood Chem
January 2025
Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India.
The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!