Introduction: A coeliac disease (CD) diagnosis is likely in children with levels of tissue transglutaminase autoantibodies (anti-TG2) >10 times the upper reference value, whereas children with lower anti-TG2 levels need an intestinal biopsy to confirm or rule out CD. A blood sample is easier to obtain than an intestinal biopsy sample, and stabilised blood is suitable for routine diagnostics because transcript levels are preserved at sampling. Therefore, we investigated gene expression in stabilised whole blood to explore the possibility of gene expression-based diagnostics for the diagnosis and follow-up of CD.
Design: We performed RNA sequencing of stabilised whole blood from active CD cases (n=10), non-CD cases (n=10), and treated CD cases on a gluten-free diet (n=10) to identify diagnostic CD biomarkers and pathways involved in CD pathogenesis.
Results: No single gene was differentially expressed between the sample groups. However, by using gene set enrichment analysis (GSEA), significantly differentially expressed pathways were identified in active CD, and these pathways involved the inflammatory response, negative regulation of viral replication, translation, as well as cell proliferation, differentiation, migration, and survival. The results indicate that there are differences in pathway regulation in CD, which could be used for diagnostic purposes. Comparison between GSEA results based on stabilised blood with GSEA results based on small intestinal biopsies revealed that type I interferon response, defence response to virus, and negative regulation of viral replication were identified as pathways common to both tissues.
Conclusions: Stabilised whole blood is not a suitable sample for clinical diagnostics of CD based on single genes. However, diagnostics based on a pathway-focused gene expression panel may be feasible, but requires further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745333 | PMC |
http://dx.doi.org/10.1136/bmjgast-2020-000536 | DOI Listing |
CNS Drugs
January 2025
Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, China.
Background: Early neurological deterioration (END) is associated with a poor prognosis in acute ischemic stroke (AIS). Effectively lowering low-density lipoprotein cholesterol (LDL-C) can improve the stability of atherosclerotic plaque and reduce post-stroke inflammation, which may be an effective means to lower the incidence of END. The objective of this study was to determine the preventive effects of evolocumab on END in patients with non-cardiogenic AIS.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.
View Article and Find Full Text PDFBiomaterials
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China. Electronic address:
The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.
Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!