Animals rapidly collect and act on incoming information to navigate complex environments, making the precise timing of sensory feedback critical in the context of neural circuit function. Moreover, the timing of sensory input determines the biomechanical properties of muscles that undergo cyclic length changes, as during locomotion. Both of these issues come to a head in the case of flying insects, as these animals execute steering manoeuvres at timescales approaching the upper limits of performance for neuromechanical systems. Among insects, flies stand out as especially adept given their ability to execute manoeuvres that require sub-millisecond control of steering muscles. Although vision is critical, here I review the role of rapid, wingbeat-synchronous mechanosensory feedback from the wings and structures unique to flies, the halteres. The visual system and descending interneurons of the brain employ a spike rate coding scheme to relay commands to the wing steering system. By contrast, mechanosensory feedback operates at faster timescales and in the language of motor neurons, i.e. spike timing, allowing wing and haltere input to dynamically structure the output of the wing steering system. Although the halteres have been long known to provide essential input to the wing steering system as gyroscopic sensors, recent evidence suggests that the feedback from these vestigial hindwings is under active control. Thus, flies may accomplish manoeuvres through a conserved hindwing circuit, regulating the firing phase-and thus, the mechanical power output-of the wing steering muscles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779504 | PMC |
http://dx.doi.org/10.1098/rspb.2020.1774 | DOI Listing |
Sci Robot
November 2024
Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands.
Gliding birds lack a vertical tail, yet they fly stably rudderless in turbulence without needing discrete flaps to steer. In contrast, nearly all airplanes need vertical tails to damp Dutch roll oscillations and to control yaw. The few exceptions that lack a vertical tail either leverage differential drag-based yaw actuators or their fixed planforms are carefully tuned for passively stable Dutch roll and proverse yaw.
View Article and Find Full Text PDFCrit Care Resusc
June 2024
Division of Pediatric Critical Care, Department of Pediatrics, McMaster Children's Hospital and McMaster University, 1280 Main St W. HSC 3E-20, Hamilton, L8S 4K1, Ontario, Canada.
Background: The SQUEEZE trial is a multicentred randomized controlled trial which seeks to determine the optimal approach to fluid resuscitation in paediatric septic shock. SQUEEZE also includes a nested translational study, SQUEEZE-D, investigating the value of plasma cell-free DNA for prediction of clinical outcomes.
Objective: To present a pre-specified statistical analysis plan (SAP) for the SQUEEZE trial prior to finalizing the trial data set and prior to commencing data analysis.
Curr Biol
August 2024
Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA. Electronic address:
Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture.
View Article and Find Full Text PDFNature
July 2024
Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
EClinicalMedicine
June 2024
London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
Background: Long COVID is the patient-coined term for the persistent symptoms of COVID-19 illness for weeks, months or years following the acute infection. There is a large burden of long COVID globally from self-reported data, but the epidemiology, causes and treatments remain poorly understood. Primary care is used to help identify and treat patients with long COVID and therefore Electronic Health Records (EHRs) of past COVID-19 patients could be used to help fill these knowledge gaps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!