Animals rapidly collect and act on incoming information to navigate complex environments, making the precise timing of sensory feedback critical in the context of neural circuit function. Moreover, the timing of sensory input determines the biomechanical properties of muscles that undergo cyclic length changes, as during locomotion. Both of these issues come to a head in the case of flying insects, as these animals execute steering manoeuvres at timescales approaching the upper limits of performance for neuromechanical systems. Among insects, flies stand out as especially adept given their ability to execute manoeuvres that require sub-millisecond control of steering muscles. Although vision is critical, here I review the role of rapid, wingbeat-synchronous mechanosensory feedback from the wings and structures unique to flies, the halteres. The visual system and descending interneurons of the brain employ a spike rate coding scheme to relay commands to the wing steering system. By contrast, mechanosensory feedback operates at faster timescales and in the language of motor neurons, i.e. spike timing, allowing wing and haltere input to dynamically structure the output of the wing steering system. Although the halteres have been long known to provide essential input to the wing steering system as gyroscopic sensors, recent evidence suggests that the feedback from these vestigial hindwings is under active control. Thus, flies may accomplish manoeuvres through a conserved hindwing circuit, regulating the firing phase-and thus, the mechanical power output-of the wing steering muscles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7779504PMC
http://dx.doi.org/10.1098/rspb.2020.1774DOI Listing

Publication Analysis

Top Keywords

wing steering
16
steering system
12
timing sensory
8
steering muscles
8
mechanosensory feedback
8
steering
6
wing
5
timing
4
timing precision
4
precision fly
4

Similar Publications

Bird-inspired reflexive morphing enables rudderless flight.

Sci Robot

November 2024

Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands.

Gliding birds lack a vertical tail, yet they fly stably rudderless in turbulence without needing discrete flaps to steer. In contrast, nearly all airplanes need vertical tails to damp Dutch roll oscillations and to control yaw. The few exceptions that lack a vertical tail either leverage differential drag-based yaw actuators or their fixed planforms are carefully tuned for passively stable Dutch roll and proverse yaw.

View Article and Find Full Text PDF

Background: The SQUEEZE trial is a multicentred randomized controlled trial which seeks to determine the optimal approach to fluid resuscitation in paediatric septic shock. SQUEEZE also includes a nested translational study, SQUEEZE-D, investigating the value of plasma cell-free DNA for prediction of clinical outcomes.

Objective: To present a pre-specified statistical analysis plan (SAP) for the SQUEEZE trial prior to finalizing the trial data set and prior to commencing data analysis.

View Article and Find Full Text PDF

Flies tune the activity of their multifunctional gyroscope.

Curr Biol

August 2024

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA. Electronic address:

Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture.

View Article and Find Full Text PDF
Article Synopsis
  • Animal movement is directed by motor neurons that connect the central nervous system to muscles, with complex premotor networks coordinating these movements for various behaviors.
  • Researchers analyzed the wiring of premotor circuits in Drosophila flies to understand how motor networks control leg and wing movements.
  • They discovered that leg motor modules have a hierarchical structure based on the size of motor neurons, while wing circuits are more flexible in their connectivity, highlighting differences in motor control for distinct body parts.
View Article and Find Full Text PDF

Background: Long COVID is the patient-coined term for the persistent symptoms of COVID-19 illness for weeks, months or years following the acute infection. There is a large burden of long COVID globally from self-reported data, but the epidemiology, causes and treatments remain poorly understood. Primary care is used to help identify and treat patients with long COVID and therefore Electronic Health Records (EHRs) of past COVID-19 patients could be used to help fill these knowledge gaps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!