A thermodynamic study of F108 and F127 block copolymer interactions with liposomes at physiological temperature.

J Liposome Res

Departamento de Química, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de México, México.

Published: March 2022

The interactions of egg yolk phosphatidylcholine liposomes with F108 and F127 triblock copolymers, in the monomer state, were analyzed by isothermal titration calorimetry (ITC) at 37 °C. According to the results, the critical micelle concentration was determined to be 0.4 and 0.04 wt.% for F108 and F127, respectively, by surface tension at 37 °C. According to the results, liposomes/poloxamers were not favoured energetically, since endothermic interactions were observed. However, positive changes in entropy promoted a spontaneous process. F127 had a greater partition coefficient (51.97 ± 1.77 × 10), stronger affinity, than F108 (8.19 ± 0.37 × 10) towards the vesicle lipid bilayer due to its larger hydrophobic block. After the ITC experiments, an increased vesicle size (within about 1-3 nm average) by dynamic light scattering and the formation of bilayer discs by electron microscopy (EM) was observed at low copolymer concentrations (0.57 mol% of F108 and 1.01 mol% of F127). The EM and ITC results confirmed the intimate association of the copolymers with the membrane instead of being simply absorbed onto the bilayer surface. Our results indicate that the temperature of the system (37 °C), the copolymer concentration and hydrophobic chain length are important factors for the interaction of poloxamers with lipid bilayers and the stability of liposomes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08982104.2020.1865401DOI Listing

Publication Analysis

Top Keywords

f108 f127
12
f108
5
f127
5
thermodynamic study
4
study f108
4
f127 block
4
block copolymer
4
copolymer interactions
4
interactions liposomes
4
liposomes physiological
4

Similar Publications

Background: Nanosuspension has emerged as an effective, lucrative, and unequalled approach for efficiently elevating the dissolution and bioavailability of aqueous soluble drugs. Diverse challenges persist within this domain, demanding further comprehensive investigation and exploration.

Objective: This study aims to design, develop, optimise formulation and process variables, and characterise the stabilised aqueous dissolvable nanosuspension using chlorthalidone as a BCS class- IV drug.

View Article and Find Full Text PDF

The article reports the synthesis of an ordered mesoporous network of heterophase TiO monoliths as a visible light-responsive photocatalyst using tri-block copolymers of Pluronic F108, P123 and F127 as structure-directing agents (SDAs) and temperature-controlled calcination (450-650 °C) has been carried out by direct templating-assisted hydrothermal approach. The structural/surface morphology and topographical properties of the photocatalyst are characterized using FE-SEM-EDAX, HR-TEM-SAED, p-XRD, VB-XPS, PLS, TG/DTA, UV-Vis-DRS, BET/BJH and zeta potential analysis. The undoped heterophase mesoporous TiO monoliths with in-built lattice/surface defects exhibit visible light photocatalytic properties, successfully dissipating Reactive Brown 10 (RB-10) dye.

View Article and Find Full Text PDF

Fundamental investigations into the photophysical properties and microenvironmental features of pluronic-zwitterionic surfactant mixed assemblies are essential for advancing our understanding of molecular interactions at the nanoscale, setting the stage for innovative solutions in drug delivery, diagnostics, and other applications of pluronic-zwitterionic surfactant assemblies. This investigation explores the intricate photophysics of pluronic-zwitterionic surfactant mixed assemblies, utilizing the twisted intramolecular charge transfer state forming styryl dye trans-2-[(4-dimethylamino) styryl] benzothiazole as a probe. By comparing the behaviors of two distinct poly(ethylene oxide)--poly(propylene oxide)--poly(ethylene oxide) block copolymers with block composition of (PEO)(PPO)-(PEO) [F108] and (PEO)-(PPO)-(PEO) [F127] at concentrations of 5 and 10 wt %, this study systematically examines the impact of the addition of zwitterionic surfactants.

View Article and Find Full Text PDF

The nonradiative pathway leading to the photoisomerization of a cyanine dye is well-established information. However, the modulations induced in the photoisomerization pathway by a Keggin-type polyoxometalate in a confined media is new. Our study reveals that, in the presence of pluronic block copolymers F-108 and P-123, phosphomolybdic acid hydrate (PMA) promotes the aggregation of 3,3'-diethylthiadicarbocyanine iodide (DTDCI).

View Article and Find Full Text PDF

Self-assembled lipid nanoparticles (LNPs), serving as essential nanocarriers in recent COVID-19 mRNA vaccines, provide a stable and versatile platform for delivering a wide range of biological materials. Notably, LNPs with unique inverse mesostructures, such as cubosomes and hexosomes, are recognized as fusogenic nanocarriers in the drug delivery field. This study delves into the physicochemical properties, including size, lyotropic liquid crystalline mesophase, and apparent pK of LNPs with various lipid components, consisting of two ionizable lipids (ALC-0315 and SM-102) used in commercial COVID-19 mRNA vaccines and a well-known inverse mesophase structure-forming helper lipid, phytantriol (PT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!