AI Article Synopsis

Article Abstract

This work investigated the linear thermal expansion properties of a multi-material specimen fabricated with Invar M93 and A36 steel. A sequence of tests was performed to investigate the viability of additively manufactured Invar M93 for lowering the coefficient of thermal expansion (CTE) in multi-material part tooling. Invar beads were additively manufactured on a steel base plate using a fiber laser system, and samples were taken from the steel, Invar, and the interface between the two materials. The CTE of the samples was measured between 40 °C and 150 °C using a thermomechanical analyzer, and the elemental composition was studied with energy dispersive X-ray spectroscopy. The CTE of samples taken from the steel and the interface remained comparable to that of A36 steel; however, deviations between the thermal expansion values were prevalent due to element diffusion in and around the heat-affected zone. The CTEs measured from the Invar bead were lower than those from the other sections with the largest and smallest thermal expansion values being 10.40 μm/m-K and 2.09 μm/m-K. In each of the sections, the largest CTE was measured from samples taken from the end of the weld beads. An additional test was performed to measure the aggregate expansion of multi-material tools. Invar beads were welded on an A36 steel plate. The invar was machined, and the sample was heated in an oven from 40 °C and 160 °C. Strain gauges were placed on the surface of the part and were used to analyze how the combined thermal expansions of the invar and steel would affect the thermal expansion on the surface of a tool. There were small deviations between the expansion values measured by gauges placed in different orientations, and the elongation of the sample was greatest along the dimension containing a larger percentage of steel. On average, the expansion of the machined Invar surface was 42% less than the expansion of the steel surface. The results of this work demonstrate that additively manufactured Invar can be utilized to decrease the CTE for multi-material part tooling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764307PMC
http://dx.doi.org/10.3390/ma13245683DOI Listing

Publication Analysis

Top Keywords

thermal expansion
24
additively manufactured
16
a36 steel
12
expansion values
12
invar
11
expansion
10
steel
10
linear thermal
8
invar steel
8
invar m93
8

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Short duration heat acclimation (HA) (≤5 daily heat exposures) elicits incomplete adaptation compared to longer interventions, possibly due to the lower accumulated thermal 'dose'. It is unknown if matching thermal 'dose' over a shorter timescale elicits comparable adaptation to a longer intervention. Using a parallel-groups design, we compared: i) 'condensed' HA (CHA; =17 males) consisting of 4×75 min∙day heat exposures (target rectal temperature ()=38.

View Article and Find Full Text PDF

A Robust, Biodegradable, and Fire-Retardant Cellulose Nanofibers-Based Structural Material Fabricated from Natural Sargassum.

Adv Mater

January 2025

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.

With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus.

View Article and Find Full Text PDF

Advances in analytical scanning transmission electron microscopy (STEM) and in microelectronic mechanical systems (MEMS) based microheaters have enabled in-situ materials' characterization at the nanometer scale at elevated temperature. In addition to resolving the structural information at elevated temperatures, detailed knowledge of the local temperature distribution inside the sample is essential to reveal thermally induced phenomena and processes. Here, we investigate the accuracy of plasmon energy expansion thermometry (PEET) as a method to map the local temperature in a tungsten (W) lamella in a range between room temperature and 700 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!