Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper studies the degradation of methiocarb, a highly hazardous pesticide found in waters and wastewaters, through an electro-Fenton process, using a boron-doped diamond anode and a carbon felt cathode; and evaluates its potential to reduce toxicity towards the model organism . The influence of applied current density and type and concentration of added iron source, Fe(SO)·5HO or FeCl·6HO, is assessed in the degradation experiments of methiocarb aqueous solutions. The experimental results show that electro-Fenton can be successfully used to degrade methiocarb and to reduce its high toxicity towards . Total methiocarb removal is achieved at the applied electric charge of 90 C, and a 450× reduction in the acute toxicity towards , on average, from approximately 900 toxic units to 2 toxic units, is observed at the end of the experiments. No significant differences are found between the two iron sources studied. At the lowest applied anodic current density, 12.5 A m, an increase in iron concentration led to lower methiocarb removal rates, but the opposite is found at the highest applied current densities. The highest organic carbon removal is obtained at the lowest applied current density and added iron concentration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763907 | PMC |
http://dx.doi.org/10.3390/molecules25245893 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!