This article presents the results of an experimental investigation into the machinability of Ti6Al4V alloy during hard turning, including both conventional and high-speed machining, using polycrystalline diamond (PCD) inserts. A central composite design of experiment procedure was followed to examine the effects of variable process parameters; feed rate, cutting speed and depth of cut (each at five levels) and their interaction effects on surface roughness and cutting temperature as process responses. The results revealed that cutting temperature increased with increasing cutting speed and decreasing feed rate in both conventional and high-speed machining. It was found that high-speed machining showed an average increase in cutting temperature of 65% compared with conventional machining. Nevertheless, high-speed machining showed better performance in terms of lower surface roughness despite using higher feed rates compared to conventional machining. High-speed machining of Ti6Al4V showed an improvement in surface roughness of 11% compared with conventional machining, with a 207% increase in metal removal rate (MRR) which offered the opportunity to increase productivity. Finally, an inverse relationship was verified between generated cutting temperature and surface roughness. This was attributed mainly to the high cutting temperature generated, softening, and decreasing strength of the material in the vicinity of the cutting zone which in turn enabled smoother machining and reduced surface roughness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764427PMC
http://dx.doi.org/10.3390/ma13245677DOI Listing

Publication Analysis

Top Keywords

cutting temperature
24
high-speed machining
24
surface roughness
20
conventional high-speed
12
machining high-speed
12
compared conventional
12
conventional machining
12
machining
10
cutting
9
hard turning
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!