In recent years, prognostic and health management (PHM) has played an important role in industrial engineering. Efficient remaining useful life (RUL) prediction can ensure the development of maintenance strategies and reduce industrial losses. Recently, data-driven based deep learning RUL prediction methods have attracted more attention. The convolution neural network (CNN) is a kind of deep neural network widely used in RUL prediction. It shows great potential for application in RUL prediction. A CNN is used to extract the features of time-series data according to the spatial feature method. This way of processing features without considering the time dimension will affect the prediction accuracy of the model. On the contrary, the commonly used long short-term memory (LSTM) network considers the timing of the data. However, compared with CNN, it lacks spatial data extraction capabilities. This paper proposes a double-channel hybrid prediction model based on the CNN and a bidirectional LSTM network to avoid those drawbacks. The sliding time window is used for data preprocessing, and an improved piece-wise linear function is used for model validating. The prediction model is evaluated using the C-MAPSS dataset provided by NASA. The predicted results show the proposed prediction model to have a better prediction performance compared with other state-of-the-art models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764061PMC
http://dx.doi.org/10.3390/s20247109DOI Listing

Publication Analysis

Top Keywords

rul prediction
16
neural network
12
prediction model
12
prediction
10
double-channel hybrid
8
deep neural
8
based cnn
8
remaining life
8
lstm network
8
network
5

Similar Publications

This paper proposes an improved remaining useful life (RUL) prediction method for stochastic degradation devices monitored by multi-source sensors under data-model interactive framework. Firstly, the interrelationships among sensors are established using k-nearest neighbor (KNN), and the composite health index (CHI) is constructed by aggregating the multi-source sensor information through the graph convolutional network (GCN). Secondly, a stochastic degradation model with triple uncertainty at any initial degradation level is established to improve the matching degree between the stochastic degradation model and the actual degradation process.

View Article and Find Full Text PDF

Industry 4.0 represents the fourth industrial revolution, which is characterized by the incorporation of digital technologies, the Internet of Things (IoT), artificial intelligence, big data, and other advanced technologies into industrial processes. Industrial Machinery Health Management (IMHM) is a crucial element, based on the Industrial Internet of Things (IIoT), which focuses on monitoring the health and condition of industrial machinery.

View Article and Find Full Text PDF

Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.

View Article and Find Full Text PDF

The prediction of the remaining useful life (RUL) holds significant importance within the field of prognostics and health management (PHM), which may provide lifetime information about the system. The foundation for effectively estimating RUL is constructing an applicable degradation model for the system. However, the majority of existing degradation models only consider the issue of age dependence and disregard state dependence.

View Article and Find Full Text PDF

Predictive maintenance (PdM) is increasingly pursued to reduce wind farm operation and maintenance costs by accurately predicting the remaining useful life (RUL) and strategically scheduling maintenance. However, the remoteness of wind farms often renders current methodologies ineffective, as they fail to provide a sufficiently reliable advance time window for maintenance planning, limiting PdM's practicality. This study introduces a novel deep learning (DL) methodology for future-RUL forecasting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!