In recent years, prognostic and health management (PHM) has played an important role in industrial engineering. Efficient remaining useful life (RUL) prediction can ensure the development of maintenance strategies and reduce industrial losses. Recently, data-driven based deep learning RUL prediction methods have attracted more attention. The convolution neural network (CNN) is a kind of deep neural network widely used in RUL prediction. It shows great potential for application in RUL prediction. A CNN is used to extract the features of time-series data according to the spatial feature method. This way of processing features without considering the time dimension will affect the prediction accuracy of the model. On the contrary, the commonly used long short-term memory (LSTM) network considers the timing of the data. However, compared with CNN, it lacks spatial data extraction capabilities. This paper proposes a double-channel hybrid prediction model based on the CNN and a bidirectional LSTM network to avoid those drawbacks. The sliding time window is used for data preprocessing, and an improved piece-wise linear function is used for model validating. The prediction model is evaluated using the C-MAPSS dataset provided by NASA. The predicted results show the proposed prediction model to have a better prediction performance compared with other state-of-the-art models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764061 | PMC |
http://dx.doi.org/10.3390/s20247109 | DOI Listing |
ISA Trans
December 2024
College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
This paper proposes an improved remaining useful life (RUL) prediction method for stochastic degradation devices monitored by multi-source sensors under data-model interactive framework. Firstly, the interrelationships among sensors are established using k-nearest neighbor (KNN), and the composite health index (CHI) is constructed by aggregating the multi-source sensor information through the graph convolutional network (GCN). Secondly, a stochastic degradation model with triple uncertainty at any initial degradation level is established to improve the matching degree between the stochastic degradation model and the actual degradation process.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11673, Saudi Arabia.
Industry 4.0 represents the fourth industrial revolution, which is characterized by the incorporation of digital technologies, the Internet of Things (IoT), artificial intelligence, big data, and other advanced technologies into industrial processes. Industrial Machinery Health Management (IMHM) is a crucial element, based on the Industrial Internet of Things (IIoT), which focuses on monitoring the health and condition of industrial machinery.
View Article and Find Full Text PDFSci Rep
January 2025
Electronics and Communication Engineering Dept. Faculty of Engineering, Horus University, New Damietta, Egypt.
Electric vehicles (EVs) rely heavily on lithium-ion battery packs as essential energy storage components. However, inconsistencies in cell characteristics and operating conditions can lead to imbalanced state of charge (SOC) levels, resulting in reduced capacity and accelerated degradation. This study presents an active cell balancing method optimized for both charging and discharging scenarios, aiming to equalize SOC across cells and improve overall pack performance.
View Article and Find Full Text PDFISA Trans
December 2024
ATS Lab, Air Force Engineering University, 710038 Xi'an, China.
The prediction of the remaining useful life (RUL) holds significant importance within the field of prognostics and health management (PHM), which may provide lifetime information about the system. The foundation for effectively estimating RUL is constructing an applicable degradation model for the system. However, the majority of existing degradation models only consider the issue of age dependence and disregard state dependence.
View Article and Find Full Text PDFHeliyon
October 2024
School of Software, Beihang University, Beijing, 100191, PR China.
Predictive maintenance (PdM) is increasingly pursued to reduce wind farm operation and maintenance costs by accurately predicting the remaining useful life (RUL) and strategically scheduling maintenance. However, the remoteness of wind farms often renders current methodologies ineffective, as they fail to provide a sufficiently reliable advance time window for maintenance planning, limiting PdM's practicality. This study introduces a novel deep learning (DL) methodology for future-RUL forecasting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!