Wire-mesh sensors are well-established scientific instruments for measuring the spatio-temporal phase distribution of two-phase flows based on different electrical conductivities of the phases. Presently, these instruments are also applied in industrial processes and need to cope with dynamic operating conditions increasingly. However, since the quantification of phase fractions is achieved by normalizing signals with respect to a separately recorded reference measurement, the results are sensitive to temperature differences in any application. Therefore, the present study aims at proposing a method to compensate temperature effects in the data processing procedure. Firstly, a general approach is theoretically derived from the underlying measurement principle and compensation procedures for the electrical conductivity from literature models. Additionally, a novel semi-empirical model is developed on the basis of electrochemical fundamentals. Experimental investigations are performed using a single-phase water loop with adjustable fluid temperature in order to verify the theoretical approach for wire-mesh sensor applications and to compare the different compensation models by means of real data. Finally, the preferred model is used to demonstrate the effect of temperature compensation with selected sets of experimental two-phase data from a previous study. The results are discussed in detail and show that temperature effects need to be handled carefully-not merely in industrial applications, but particularly in laboratory experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763244PMC
http://dx.doi.org/10.3390/s20247114DOI Listing

Publication Analysis

Top Keywords

temperature compensation
8
wire-mesh sensors
8
temperature effects
8
temperature
6
compensation conductivity-based
4
conductivity-based phase
4
phase fraction
4
fraction measurements
4
measurements wire-mesh
4
sensors gas-liquid
4

Similar Publications

This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.

View Article and Find Full Text PDF

Optically pumped magnetometers (OPMs) functioning in the spin-exchange relaxation-free (SERF) regime have emerged as attractive options for measuring weak magnetic fields, owing to their portability and remarkable sensitivity. The operation of SERF-OPM critically relies on the ambient magnetic field; thus, a magnetic field compensation device is commonly employed to mitigate the ambient magnetic field to near zero. Nonetheless, the bias of the OPM may influence the compensation impact, a subject that remains unexamined.

View Article and Find Full Text PDF

A Novel Temperature Drift Compensation Algorithm for Liquid-Level Measurement Systems.

Micromachines (Basel)

December 2024

Key Laboratory of Micro/Nano Devices and Systems, Ministry of Education, North University of China, Taiyuan 030051, China.

Aiming at the problem that ultrasonic detection is greatly affected by temperature drift, this paper investigates a novel temperature compensation algorithm. Ultrasonic impedance-based liquid-level measurement is a crucial non-contact, non-destructive technique. However, temperature drift can severely affect the accuracy of experimental measurements based on this technology.

View Article and Find Full Text PDF

Genomic and transcriptomic insights into vitamin A-induced thermogenesis and gene reuse as a cold adaptation strategy in wild boars.

Commun Biol

January 2025

National Key Laboratory for Swine genetic improvement and production technology, Ministry of Science and Technology of China, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P.R. China.

Wild boars inhabit diverse climates, including frigid regions like Siberia, but their migration history and cold adaptation mechanisms into high latitudes remain poorly understood. We constructed the most comprehensive wild boar whole-genome variant dataset to date, comprising 124 samples from tropical to frigid zones, among which 47 Russian, 8 South Chinese and 3 Vietnamese wild boars were newly supplemented. We also gathered 75 high-quality RNA-seq datasets from 10 tissues of 6 wild boars from Russia and 6 from southern China.

View Article and Find Full Text PDF

A dimmable LED light source along the Planckian locus.

iScience

January 2025

Ningbo Sunpu Led Co., Ltd., Ningbo 315000, China.

Multiple channels are designed for dimmable LED light sources with color temperatures ranging from 2,700 to 6,500 K. However, issues such as Delta uv (D) values <0, lower brightness, luminous efficacy, and color rendering index (CRI), lower power density, exceeding the standard deviation of color matching (SDCM), unconstant power, poor color consistencies, and high costs persist. We present a three-channel LED light source featuring an integrated chip-on-board (COB) package structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!