The potential of plant extracts as bioinsecticides has been described as a promising field of agricultural development. In this work, the extracts of (pomegranate), (American pokeweed), (shrubby gromwell), (gorce), (French marigold), (camellia), (rue or herb-of-grace) were obtained, purified, and their activity against () insect cells was investigated. From the pool of over twenty extracts obtained, comprising different polarities and vegetable materials, less polar samples were shown to be more toxic towards the insect cell line 9. Among these, a dichloromethane extract of was capable of causing a loss of viability of over 50%, exceeding the effect of the commercial insecticide chlorpyrifos. This extract elicited chromatin condensation and the fragmentation in treated cells. Nanoencapsulation assays of the cytotoxic plant extracts in soybean liposomes and chitosan nanostructures were carried out. The nanosystems exhibited sizes lower or around 200 nm, low polydispersity, and generally high encapsulation efficiencies. Release assays showed that chitosan nanoemulsions provide a fast and total extract release, while liposome-based systems are suitable for a more delayed release. These results represent a proof-of-concept for the future development of bioinsecticide nanoformulations based on the cytotoxic plant extracts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764084 | PMC |
http://dx.doi.org/10.3390/molecules25245855 | DOI Listing |
BMJ Open
January 2025
Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
Objectives: To assess the therapeutic effects and safety of Tongxie Yaofang (TXYF) granules vs placebo as an alternative treatment for diarrhoea-predominant irritable bowel syndrome (IBS-D). We hypothesised that TXYF would improve clinical responses among patients with IBS-D.
Design: A randomised, double-blind, placebo-controlled, phase II, superiority trial.
Sci Rep
January 2025
Ecology and Allergology Lab, Department of Zoology, Golapbag Campus, The University of Burdwan, Burdwan, 713104, West Bengal, India.
The jute hairy caterpillar, Spilosoma obliqua (Lepidoptera: Erebidae) is considered as one of the major threats to jute cultivation. The best eco-friendly methods to combat these jute pests involve administration of nano-biopesticides, as a successful alternative to the toxic chemicals. In this study, a nano-biopesticide formulation containing green synthesized silver nanoparticles (Ag NPs) using Ocimum sanctum leaf extract has been proposed.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, K. N. Toosi University of Technology, Tehran 19697, Iran.
One of the successful techniques developed for the inhibition of metal corrosion is the utilization of phytochemicals from plant extracts as corrosion inhibitors. Theoretical studies are utilized to predict how organic components behave on metal surfaces and can pave the way for the development and synthesis of innovative, efficient corrosion inhibitors. However, atomic-level insights into the inhibition mechanisms of these green components are still needed.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFPLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!