A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Analysis of the Reliability of a Bus Safety Structure on Carrying Out the Numerical and Experimental Tests. | LitMetric

An Analysis of the Reliability of a Bus Safety Structure on Carrying Out the Numerical and Experimental Tests.

Sensors (Basel)

Department of Automobile Engineering, Transport Engineering Faculty, Vilnius Gediminas Technical University, J. Basanavičiaus g. 28, LT-03224 Vilnius, Lithuania.

Published: December 2020

In the paper, the reliability of a spatial tubular structure of a bus safety frame formed of different steel profiles is discussed. A methodology for the bus safety structure modeling is presented herein by applying numerical methods that enable us to simulate virtually a test for assessing bus rollover crashworthiness according to the United Nations Economic Commission for Europe (UNECE) Regulation No. 66, and also to assess and ensure the reliability and safety of the structure under operating conditions. The simulation has been performed by applying the mixed method of kinematical analysis and finite elements. In the course of the calculations, physical and geometrical non-linearity of materials was assessed. In addition, an experimental rollover test according to UNECE Regulation No. 66 was performed in this work, striving to verify the provided methodology for modeling by applying numerical methods. For the experiment, an identical safety structure and a rollover stand (identical to the one used in modeling) were used. The rollover test was shot by a Phantom v711 high-speed camera. In the paper, the results of kinematical and dynamic analysis from applying the finite element method and the ones of the experimental test, as well as their comparisons, are provided. It is assessed whether the developed safety structure model is reliable and suitable for use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764572PMC
http://dx.doi.org/10.3390/s20247092DOI Listing

Publication Analysis

Top Keywords

safety structure
20
bus safety
12
applying numerical
8
numerical methods
8
unece regulation
8
rollover test
8
safety
6
structure
6
analysis reliability
4
bus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!