The extensive production of polymer composites reinforced by carbon nanotube is limited by the absence of non-destructive evaluation (NDE) methods capable of assessing product quality to guarantee compliance with specifications. It is well known that the level of dispersion of carbon nanotubes (CNTs) in the polymer matrix is the parameter that, much more than others, can influence their enhancement capabilities. Here an active Infrared Thermography Non Destructive Testing(IR-NDT) inspection, joined with pulsed phase thermography (PPT), were applied for the first time to epoxy-CNT composites to evaluate the level of dispersion of the nanoparticles. The PPT approach was tested on three groups of epoxy nanocomposite samples with different levels of dispersion of the nanoparticles. The phasegrams obtained with the presented technique clearly show clusters, or bundles, of CNTs when present, so a comparison with the reference sample is not necessary to evaluate the quality of the dispersion. Therefore, the new NDE approach can be applied to verify that the expected dispersion levels are met in products made from epoxy and Multi-Walled Carbon Nanotubes (MWCNTs). The mechanisms underlying the effects of the dispersion of carbon nanotube on the thermal response of polymer composites have been identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763697PMC
http://dx.doi.org/10.3390/ma13245649DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
12
polymer composites
8
carbon nanotube
8
level dispersion
8
dispersion carbon
8
dispersion nanoparticles
8
dispersion
7
carbon
5
nanotubes dispersion
4
dispersion assessment
4

Similar Publications

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.

View Article and Find Full Text PDF

A mirror-image experiment: Sorting carbon nanotubes by L-DNA.

PNAS Nexus

January 2025

Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.

DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube.

View Article and Find Full Text PDF

An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!