In this work, hybrid polymeric bis-tridentate iridium(III) complexes bearing derivatives of terpyridine (tpy) and 2,6-di(phenyl) pyridine as ligands were successfully synthesized and evaluated as red-light emitters. At first, the synthesis of small molecular bis-tridendate Ir(III) complexes bearing alkoxy-, methyl-, or hydroxy-functionalized terpyridines and a dihydroxyphenyl-pyridine moiety was accomplished. Molecular complexes bearing two polymerizable end-hydroxyl groups and methyl- or alkoxy-decorated terpyridines were copolymerized with difluorodiphenyl-sulphone under high temperature polyetherification conditions. Alternatively, the post-polymerization complexation of the terpyridine-iridium(III) monocomplexes onto the biphenyl-pyridine main chain homopolymer was explored. Both cases afforded solution-processable metallocomplex-polymers possessing the advantages of phosphorescent emitters in addition to high molecular weights and excellent film-forming ability via solution casting. The structural, optical, and electrochemical properties of the monomeric and polymeric heteroleptic iridium complexes were thoroughly investigated. The polymeric metallocomplexes were found to emit in the orange-red region (550-600 nm) with appropriate HOMO and LUMO levels to be used in conjunction with blue-emitting hosts. By varying the metal loading on the polymeric backbone, the emitter's specific emission maxima could be successfully tuned.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764732 | PMC |
http://dx.doi.org/10.3390/polym12122976 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University - Wangjiang Campus: Sichuan University, Chemistry, 29 Wangjiang Rd, 610064, Chengdu, CHINA.
Poly(lactic-co-glycolic acid) (PLGA) has been widely employed for various biomedical applications owing to its biodegradability and biocompatibility. The discovery of the stereocomplex formation between enantiomeric alternating PLGA pairs underscored its potential as high-performance biodegradable materials with diverse material properties and biodegradability. Herein, we have established a regio- and stereoselective ring-opening polymerization approach for the synthesis of stereocomplexed isoenriched alternating PLGA from racemic methyl-glycolide (rac-MG).
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Polymer and Dye Technology, Lodz University of Technology Stefanowskiego 16 Lodz 90537 Poland.
This study investigates the structure-property relationships of a series of phenylhydrazones bearing various electron-donating and electron-withdrawing substituents, such as methoxy, dimethylamino, morpholinyl, hydroxyl, chloro, bromo, and nitro groups. The compounds were synthesized, and their structures were characterized using single-crystal X-ray diffraction, powder X-ray diffraction, FTIR spectroscopy, NMR spectroscopy, and DSC. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and UV-Vis spectroscopy were employed to elucidate the complex interplay between the molecular skeleton, substituents, and the resulting photophysical properties.
View Article and Find Full Text PDFFront Immunol
January 2025
Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
Pancreatic cancer is one of the most aggressive cancers and poses significant challenges to current therapies because of its complex immunosuppressive tumor microenvironment (TME). Oncolytic viruses armed with immunoregulatory molecules are promising strategies to overcome limited efficacy and target inaccessible and metastatic tumors. In this study, we constructed a tumor-selective vaccinia virus (VV) with deletions of the TK and A49 genes (VVLΔTKΔA49, VVL-DD) using CRISPR-Cas9-based homologous recombination.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!