Study of the Properties of a Biodegradable Polymer Filled with Different Wood Flour Particles.

Polymers (Basel)

Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador.

Published: December 2020

Lignocellulosic wood flour particles with three different sizes were used to reinforce Solanyl type bioplastic in three compositions (10, 20, and 30 wt.%) and further processed by melt-extrusion and injection molding to simulate industrial conditions. The wood flour particles were morphologically and granulometric analyzed to evaluate their use as reinforcing filler. The Fuller method on wood flour particles was successfully applied and the obtained results were subsequently corroborated by the mechanical characterization. The rheological studies allowed observing how the viscosity was affected by the addition of wood flour and to recover information about the processing conditions of the biocomposites. Results suggest that all particles can be employed in extrusion processes (shear rate less than 1000 s). However, under injection molding conditions, biocomposites with high percentages of wood flour or excessively large particles may cause an increase in defective injected-parts due to obstruction of the gate in the mold. From a processing point of view and based on the biocomposites performance, the best combination resulted in Solanyl type biopolymer reinforced with wood flour particles loaded up to 20 wt.% of small and medium particles size. The obtained biocomposites are of interest for injected molding parts for several industrial applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764264PMC
http://dx.doi.org/10.3390/polym12122974DOI Listing

Publication Analysis

Top Keywords

wood flour
28
flour particles
20
particles
8
solanyl type
8
injection molding
8
conditions biocomposites
8
wood
7
flour
7
study properties
4
properties biodegradable
4

Similar Publications

Upcycling Calcium Carbonate as an Alternative Filler in Layered Wood Composite Technology.

Materials (Basel)

January 2025

Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland.

Chicken eggshells are a useful waste that may be used somewhere rather than being placed in landfills. They are created in poultry hatcheries, the food sector (making pasta, cakes, and egg products), or our homes. In this project, this study aimed to investigate the possibility of producing plywood using a filler in the gluing process in the form of ground eggshells.

View Article and Find Full Text PDF

Study on the Characterization of Physical, Mechanical, and Creep Properties of Masson Pine and Chinese Fir Wood Flour-Reinforced High-Density Polyethylene Composites.

Polymers (Basel)

December 2024

Special and Key Laboratory for Development and Utilization of Guizhou Superior Bio-Based Materials, Guizhou Minzu University, Guiyang 550025, China.

Improving the physical, mechanical, and creep properties of wood fiber-reinforced polymer composites is crucial for broadening their application prospect. In this research, seven types of high-density polyethylene (HDPE) composites reinforced with different mass ratios of Masson pine ( Lamb.) and Chinese fir [ (Lamb.

View Article and Find Full Text PDF

The increasing complexity and production volume of glass-fiber-reinforced polymers (GFRP) present significant recycling challenges. This paper explores a potential use for mechanically recycled GFRP by blending it with high-density polyethylene (HDPE). This composite could be applied in products such as terrace boards, pipes, or fence posts, or as a substitute filler for wood flour and chalk.

View Article and Find Full Text PDF

Studies on the Enzymatic Degradation Process of Epoxy-Polyurethane Compositions Obtained with Raw Materials of Natural Origin.

Molecules

November 2024

Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska Str. 24, 31-155 Kraków, Poland.

Along with the development of technology and the increasing consumption of polymeric materials, which have become an integral part of man's everyday life, problems related to their disposal are arising. The presented research concentrates on the studies on the enzymatic degradation of selected epoxy-polyurethane materials filled with 2 or 5 wt.% of waste unmodified or chemically modified through mercerization wood flour.

View Article and Find Full Text PDF

Fused deposition molding (FDM) is a commonly used 3D printing method, and polylactic acid (PLA) has become one of the most important raw materials for this technology due to its excellent warping resistance. However, its mechanical properties are insufficient. Polybutylene adipate terephthalate (PBAT) is characterized by high toughness and low rigidity, which can complement the performance of PLA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!