Top-Down Estimation of Particulate Matter Emissions from Extreme Tropical Peatland Fires Using Geostationary Satellite Fire Radiative Power Observations.

Sensors (Basel)

Faculty of Civil and Environmental Engineering, ITB, JL. Ganesha No.10, Bandung 40132, Indonesia.

Published: December 2020

Extreme fires in the peatlands of South East (SE) Asia are arguably the world's greatest biomass burning events, resulting in some of the worst ambient air pollution ever recorded (PM > 3000 µg·m). The worst of these fires coincide with El Niño related droughts, and include huge areas of smouldering combustion that can persist for months. However, areas of flaming surface vegetation combustion atop peat are also seen, and we show that the largest of these latter fires appear to be the most radiant and intensely smoke-emitting areas of combustion present in such extreme fire episodes. Fire emissions inventories and early warning of the air quality impacts of landscape fire are increasingly based on the fire radiative power (FRP) approach to fire emissions estimation, including for these SE Asia peatland fires. "Top-down" methods estimate total particulate matter emissions directly from FRP observations using so-called "smoke emission coefficients" [; g·MJ], but currently no discrimination is made between fire types during such calculations. We show that for a subset of some of the most thermally radiant peatland fires seen during the 2015 El Niño, the most appropriate is around a factor of three lower than currently assumed (~16.8 ± 1.6 g·MJ vs. 52.4 g·MJ). Analysis indicates that this difference stems from these highly radiant fires containing areas of substantial flaming combustion, which changes the amount of particulate matter emitted per unit of observable fire radiative heat release in comparison to more smouldering dominated events. We also show that even a single one of these most radiant fires is responsible for almost 10% of the overall particulate matter released during the 2015 fire event, highlighting the importance of this fire type to overall emission totals. Discriminating these different fires types in ways demonstrated herein should thus ultimately improve the accuracy of SE Asian fire emissions estimates derived using the FRP approach, and the air quality modelling which they support.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763199PMC
http://dx.doi.org/10.3390/s20247075DOI Listing

Publication Analysis

Top Keywords

particulate matter
16
peatland fires
12
fire radiative
12
fire emissions
12
fire
11
fires
9
matter emissions
8
radiative power
8
air quality
8
frp approach
8

Similar Publications

Network-Based Identification of Key Toxic Compounds in Airborne Chemical Exposome.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.

View Article and Find Full Text PDF

Exposure Contrasts of Women Aged 40-79 Years during the Household Air Pollution Intervention Network Randomized Controlled Trial.

Environ Sci Technol

January 2025

Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.

Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.

View Article and Find Full Text PDF

As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.

View Article and Find Full Text PDF

Using low-cost sensors to assess common air pollution sources across multiple residences.

Sci Rep

January 2025

School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

The rapid development of low-cost sensors provides the opportunity to greatly advance the scope and extent of monitoring of indoor air pollution. In this study, calibrated particle matter (PM) sensors and a non-negative matrix factorisation (NMF) source apportionment technique are used to investigate PM concentrations and source contributions across three households in an urban residential area. The NMF is applied to combined data from all houses to generate source profiles that can be used to understand how PM source characteristics are similar or differ between different households in the same urban area.

View Article and Find Full Text PDF

Association of early life co-exposure to ambient PM and O with the offspring's growth within two years of age: A birth cohort study.

Int J Hyg Environ Health

January 2025

Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China. Electronic address:

Background: Previous studies indicated that early life exposure to particulate matter of 2.5 μm or less (PM) could impair children's growth. However, the adverse effects of maternal ozone (O) and its interplay with PM on offspring's growth are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!