Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interfacial bonding highly affects the quality of bimetallic bearing materials, which primarily depend upon the surface quality of a solid metal substrate in liquid-solid compound casting. In many cases, an intermediate thin metallic layer is deposited on the solid substrate before depositing the liquid metal, which improves the interfacial bonding of the opposing materials. The present work aims to develop and optimize the tinning process of a solid carbon steel substrate after incorporating flux constituents with the tin powder. Five ratios of tin-to-flux-i.e., 1:1, 1:5, 1:10, 1:15, and 1:20-were used for tinning process of carbon steel solid substrate. Furthermore, the effect of volume ratios of liquid Al-based bearing alloy to solid steel substrate were also varied-i.e., 5:1, 6.5:1 and 8.5:1-to optimize the microstructural and mechanical performance, which were evaluated by interfacial microstructural investigation, bonding area determination, hardness and interfacial strength measurements. It was found that a tin-to-flux ratio of 1:10 offered the optimum performance in AlSn12Si4Cu1/steel bimetallic materials, showing a homogenous and continuous interfacial layer structure, while tinned steels using other percentages showed discontinuous and thin layers, as in 1:5 and 1:15, respectively. Furthermore, bimetallic interfacial bonding area and hardness increased by increasing the volume ratio of liquid Al alloy to solid steel substrate. A complete interface bonding area was achieved by using the volume ratio of liquid Al alloy to solid steel substrate of ≥8.5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763545 | PMC |
http://dx.doi.org/10.3390/ma13245642 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!