Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Energy-efficiency is crucial for modern radio-frequency (RF) receivers dedicated to Internet of Things applications. Energy-efficiency enhancements could be achieved by lowering the power consumption of integrated circuits, using antenna diversity or even with an association of both strategies. This paper compares two wideband RF front-end architectures, based on conventional low-noise amplifiers (LNA) and low-noise transconductance amplifiers (LNTA) with N-path filters, operating with three transmission schemes: single antenna, antenna selection and singular value decomposition beamforming. Our results show that the energy-efficiency behavior varies depending on the required communication link conditions, distance between nodes and metrics from the front-end receivers. For short-range scenarios, LNA presents the best performance in terms of energy-efficiency mainly due to its very low power consumption. With the increasing of the communication distance, the very low noise figure provided by N-path LNTA-based architectures outperforms the power consumption issue, yielding higher energy-efficiency for all transmission schemes. In addition, the selected front-end architecture depends on the number of active antennas at the receiver. Hence, we can observe that low noise figure is more important with a few active antennas at the receiver, while low power consumption becomes more important when the number of active RF chains at the receiver increases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764141 | PMC |
http://dx.doi.org/10.3390/s20247070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!