Highly Luminescent 4-1,2,4-Triazole Derivatives: Synthesis, Molecular Structure and Photophysical Properties.

Materials (Basel)

Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, PL-90924 Łódź, Poland.

Published: December 2020

An alternative approach to the Suzuki cross-coupling reaction is used to synthesize a series of new luminophores based on 4-alkyl-4-1,2,4-triazole cores conjugated via 1,4-phenylene linker to fused-bicyclic and tricyclic aromatic, or heteroaromatic arrangements. The described methodology allows one to conduct the coupling reaction with the use of commercially available boronic acids in the presence of conventional solvents or ionic liquids and produced excellent yields. It was found that the use of ultrasounds or microwaves significantly accelerates the reaction. The obtained compounds exhibited high luminescent properties and a large quantum yield of emitted photons. The X-ray molecular structures of three highly conjugated 4-1,2,4-triazole representatives are also presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764194PMC
http://dx.doi.org/10.3390/ma13245627DOI Listing

Publication Analysis

Top Keywords

highly luminescent
4
luminescent 4-124-triazole
4
4-124-triazole derivatives
4
derivatives synthesis
4
synthesis molecular
4
molecular structure
4
structure photophysical
4
photophysical properties
4
properties alternative
4
alternative approach
4

Similar Publications

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.

View Article and Find Full Text PDF

Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.

View Article and Find Full Text PDF

Background: Schistosomiasis is caused by infection with parasitic worms and affects more than 250 million people globally. The detection of schistosome derived circulating cathodic and anodic antigens (CCA and CAA) has proven highly valuable for detecting active infections, causing both intestinal and urinary schistosomiasis.

Aim: The combined detection of CCA and CAA was explored to improve accuracy in detecting infections.

View Article and Find Full Text PDF

Photochromic Sodalites: From Natural Minerals to Advanced Applied Materials.

Acc Chem Res

January 2025

Mineralogical Society of Antwerp, Boterlaarbaan 225, 2100 Deurne, Belgium.

ConspectusWhile photochromic natural sodalites, an aluminosilicate mineral, were originally considered as curiosities, articles published in the past ten years have radically changed this perspective. It has been proven that their artificial synthesis was easy and allowed compositional tuning. Combined with simulations, it has been shown that a wide range of photochromic properties were achievable for synthetic sodalites (color, activation energy, reversibility, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!