Neurotrophin nerve growth factor (NGF) has been demonstrated to upregulate the gene expression of bradykinin receptor 2 (B2R) on sensory neurons, thus facilitating nociceptive signals. The aim of the present study is to investigate the involvement of B2R in the NGF mechanism of action in nonsensory neurons in vitro by using rat mixed cortical primary cultures (CNs) and mouse hippocampal slices, and in vivo in Alzheimer's disease (AD) transgenic mice (5xFAD) chronically treated with NGF. A significant NGF-mediated upregulation of B2R was demonstrated by microarray, Western blot, and immunofluorescence analysis in CNs, indicating microglial cells as the target of this modulation. The B2R involvement in the NGF mechanism of action was also demonstrated by using a selective B2R antagonist which was able to reverse the neuroprotective effect of NGF in CNs, as revealed by viability assay, and the NGF-induced long-term potentiation (LTP) in hippocampal slices. To confirm in vitro observations, B2R upregulation was observed in 5xFAD mouse brain following chronic intranasal NGF treatment. This study demonstrates for the first time that B2R is a key element in the neuroprotective activity and synaptic plasticity mediated by NGF in brain cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763563 | PMC |
http://dx.doi.org/10.3390/cells9122651 | DOI Listing |
J Med Virol
January 2025
Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany.
Stroke
January 2025
Experimental Cardiovascular Medicine, University of Bristol, United Kingdom (P.R.M.).
Novel strategies are needed for the treatment of acute ischemic stroke when revascularization therapies are not clinically appropriate or are unsuccessful. rKLK1 (recombinant human tissue kallikrein-1), a bradykinin-producing enzyme, offers a promising potential solution. In animal studies of acute stroke, there is a marked 36-fold increase in bradykinin B2 receptor on brain endothelial cells of the ischemic region.
View Article and Find Full Text PDFJ Allergy Clin Immunol
December 2024
University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA. Electronic address:
Over the past two decades, guidelines for the on-demand treatment of hereditary angioedema (HAE) attacks have undergone significant evolution. Early treatment guidelines, such as the Canadian 2003 International Consensus Algorithm, often gated on-demand treatment by attack location and/or severity. Pivotal trials for on-demand injectable treatments (plasma-derived C1 esterase inhibitor [C1INH], icatibant, ecallantide [US only], recombinant C1INH), which were approved in the US and EU between 2008-2014, were designed accordingly.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Communications between different cell types within a tissue are often critical for the proper functioning of an organ. In the central nervous system, interactions among neurons and glial cells are known to modulate neurotransmission, energy metabolism, extracellular ion homeostasis, and neuroprotection. Here we showed that bradykinin, a proinflammatory neuropeptide, can be detected by astrocytes, resulting in the secretion of cytokines that act on neurons.
View Article and Find Full Text PDFThis study tested the hypothesis that coronary artery adaptations during the postpartum period are related to underlying reductions in endothelium-dependent relaxation and/or augmented smooth muscle vasoconstrictor responsiveness. In vivo experiments were performed in control (nonpregnant) and postpartum swine 35-45 days post-delivery, with isometric tension experiments performed in isolated coronary arteries from those animals. Coronary artery rings demonstrated increases in active tension generation following incremental increases in passive stretch with no differences between groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!