Climbing robots are characterized by a secure surface coupling that is designed to prevent falling. The robot coupling ability is assured by an adhesion method leading to nonlinear dynamic models with time-varying parameters that affect the robot's mobility. Additionally, the wheel friction and the force of gravity force are also relevant issues that can compromise the climbing ability if they are not well modeled. This work presents a model-based torque controller for velocity tracking in a four-wheeled climbing robot specially designed to inspect storage tanks. The model-based controller (MPC) compensates for the effects of nonlinearities due to the forces of gravity, friction, and adhesion through the dynamic and kinematic modeling of the climbing robot. Dynamic modeling is based on the Lagrange-Euler approach, which allows a better understanding of how forces and torques affect the robot's movement. Besides, an analysis of the interaction force between the robot and the contact surface is proposed, since this force affects the motion of the climbing robot according to spatial orientation. Finally, simulations are carried out to examine the robot's dynamics during the climbing movement, and the MPC is validated through the redrobot simulator V-REP and practical experiments. The presented results highlight the compensation of the nonlinear effects due to the robot's climbing motion by the proposed MPC controller.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7764423 | PMC |
http://dx.doi.org/10.3390/s20247059 | DOI Listing |
Adv Mater
January 2025
School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China.
Leech locomotion, characterized by alternating sucker attachment and body contraction provides high adaptability and stability on complex terrains. Herein, a leech-inspired triboelectric soft robot is proposed for the first time, capable of amphibious movement, climbing, and load-carrying crawling. A high-performance triboelectric bionic robot system is developed to drive and control electro-responsive soft robots.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Cornell University, 124 Hoy Road, Ithaca, NY, 14850, USA.
The adaptable, modular structure of muscles, combined with their confluent energy storage allows for numerous architectures found in nature: trunks, tongues, and tentacles to name some more complex ones. To provide an artificial analog to this biological soft muscle, a self-powered, soft hydrostat actuator is presented. As an example of how to use these modules, a worm robot is assembled where the near totality of the body stores electrochemical potential.
View Article and Find Full Text PDFBiomimetics (Basel)
November 2024
Robotics Institute, Beihang University, Beijing 100191, China.
Many flights, with their precise positioning capabilities, have provided rich inspiration for designing insect-styled micro air vehicles. However, researchers have not widely studied their flight ability. In particular, research on the maneuverability of using integrated kinematics and aerodynamics is scarce.
View Article and Find Full Text PDFSensors (Basel)
December 2024
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China.
Effective adaptive grasping capability is regarded as crucial for climbing robots. However, many dry adhesion legged climbing robots are primarily focused on mobility and load capacity to perform various climbing tasks, often overlooking their operational grasping abilities. Furthermore, flexible grippers designed for adaptive grasping are typically not capable of supporting autonomous climbing or perching motions; they must be rigidly integrated with legged climbing robots, which results in increased weight and reduced load capacity.
View Article and Find Full Text PDFSensors (Basel)
November 2024
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!