Magnesium alloys can work as biomedical materials due to their Young's modules similar to that of bone. Nevertheless, in a human plasma, one of the major drawbacks of these materials is the low corrosion resistance. Here, AZ80 corrosion in the solutions containing chloride, bicarbonate, sulphate and hydrogen phosphate ions were investigated by a short-term immersion test and electrochemical techniques. The results showed that bicarbonate and hydrogen phosphate could retard corrosion rate, while chloride and sulphate accelerated corrosion rate. During the early immersion stage, the corrosion rate increased with the presence of bicarbonate. It was caused by the reaction of bicarbonate and hydroxide promoting the dissolution of magnesium and accelerating corrosion. In the later stage, the reduced corrosion rate was due to the formation of various protective films. The sample formed a new sparse porous MgSO·5HO compounds in the sulphate ion solution, which could not effectively prevent chloride ions from entering the matrix and thus accelerated the dissolution of magnesium. With the presence of hydrogen phosphate, magnesium phosphate with a much lower solubility was formed, preferentially precipitated on the surface and was not influenced by the chloride ions. The corrosion mechanisms of magnesium alloys in above ions were proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2020.111521 | DOI Listing |
Anal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 China. Electronic address:
It is imperative to investigate more cost-effective, long-lasting, efficient, and reliable non-noble metal electrocatalysts for the oxygen evolution reaction (OER) in hydrogen production via water splitting. Metal-organic complexes have been extensively researched and utilized for this purpose, yet their transformation in this process remains intriguing and underexplored. To enable a comprehensive comparison, we synthesized three types of metal-organic complexes with varying morphologies using the same raw material.
View Article and Find Full Text PDFMolecules
January 2025
Department of Physical Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria.
The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.
View Article and Find Full Text PDFMolecules
January 2025
Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
In recent years, the anti-corrosive properties of natural extracts as environmentally friendly inhibitors have gained considerable interest. This study evaluates the potential of ( L.) essential oil (), collected from Salé, Morocco, as a corrosion inhibitor for mild steel in 1 M HCl medium.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl.11, 1113 Sofia, Bulgaria.
Calcium phosphates are often used for biomedical applications. Hydroxyapatite, for example, has a wide range of applications because it mimics the mineral component of natural bone. Widespread interest in the catalytic properties of ceria is due to its use in automotive catalytic converters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!