Exercise can alter the composition of gut microbiota. However, studies examining the effects of exercise on gut microbiota in the elderly are lacking. This study aims to investigate whether an 8-week exercise training affect gut microbiota in physically inactive elderly women. Fourteen women were randomly assigned to either exercise group or control group. Repeated-measures analysis of variance was used to reveal changes in gut microbiota. Alpha diversity did not change significantly. A tendency to form 2 clusters was observed for operational taxonomic units (OTU) after intervention. At phylum, class, and order levels, a significant difference was observed between two groups for Fusobacteria (F=5.257, P=0.045), Betaproteobacteria (F=5.149, P=0.047), and Bifidobacteriales (F=7.624, P=0.020). A significant interaction was observed between two groups for Actinobacteria (F=8.434, P=0.016). At family and genus levels, a significant main effect of groups was observed in Bifidobacteriaceae (F=7.624, P=0.020), Bifidobacterium (F=7.404, P=0.022), and (F=5.881, P=0.036). These findings indicate that an 8-week exercise training may induce partial changes in relative abundance and OTU clustering of gut microbiota in physically inactive elderly women. Also, exercise may increase the abundance of bacteria associated with anti-inflammation such as Verrucomicrobia, reduce the abundance of bacteria associated with pro-inflammation such as Proteobacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1301-7011DOI Listing

Publication Analysis

Top Keywords

gut microbiota
24
8-week exercise
12
exercise training
12
microbiota physically
12
physically inactive
12
women exercise
8
inactive elderly
8
elderly women
8
observed groups
8
f=7624 p=0020
8

Similar Publications

A critical review on effects of artificial sweeteners on gut microbiota and gastrointestinal health.

J Sci Food Agric

January 2025

Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China.

Artificial sweeteners have emerged as popular alternatives to traditional sweeteners, driven by the growing concern over sugar consumption and its associated rise in obesity and metabolic disorders. Despite their widespread use, the safety and health implications of artificial sweeteners remain a topic of debate, with conflicting evidence contributing to uncertainty about their long-term effects. This review synthesizes current scientific evidence regarding the impact of artificial sweeteners on gut microbiota and gastrointestinal health.

View Article and Find Full Text PDF

: Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide, and dietary interventions have important potential in the prevention and treatment of NAFLD. Moreover, previous animal studies have shown that flaxseed has a good improvement effect in animal NAFLD models. : Assess whether flaxseed powder could improve the liver lipid content in patients with NAFLD.

View Article and Find Full Text PDF

This study aimed to investigate the effects of heat-killed N1 (HK-N1) and lipoteichoic acid (LTA) derived from it on alleviating insulin resistance by modulating the gut microbiota and amino acid metabolism. High-fat diet (HFD)-fed mice were administered live bacteria or HK-N1, and the results demonstrated that HK-N1 significantly reduced epididymal adipocyte size and serum low density lipoprotein-cholesterol, and improved insulin resistance by increasing the YY peptide and glucagon-like peptide levels. HK-N1 also modulated the gut microbiome composition, enhancing microbiota uniformity and reducing the abundance of , and .

View Article and Find Full Text PDF

The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.

View Article and Find Full Text PDF

Editorial: Insights in systems microbiology: 2022/2023.

Front Microbiol

January 2025

Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!