Understanding the effects of metal pre-exposure on the sensitivity of zebrafish larvae to metal toxicity: A toxicokinetics-toxicodynamics approach.

Ecotoxicol Environ Saf

Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China. Electronic address:

Published: February 2021

AI Article Synopsis

  • Organisms in natural ecosystems are becoming more tolerant to metal toxicity, contrasting with traditional lab-based environmental risk assessments (ERA).
  • Studies highlight that while pre-exposure to metals affects toxicokinetic processes, toxicodynamic processes may be even more impacted by pre-exposure.
  • Research on zebrafish larvae shows that pre-exposure to low levels of cadmium increases tolerance to subsequent higher exposures, while pre-exposure to low silver levels increases sensitivity to higher silver levels, suggesting important implications for understanding metal toxicity mechanisms and improving risk assessments.

Article Abstract

Organisms are increasingly tolerant to metal toxicity in the natural ecosystems, which did not match the results of the environmental risk assessment (ERA) of metals based on toxicity data from organisms in the laboratory. Studies have described the effects of pre-exposure to metals on metal toxicity tolerance in terms of the toxicokinetic (TK) process; however, the toxicodynamic (TD) process may be more susceptible to metal pre-exposure. Therefore, to determine whether pre-exposure to low concentrations of silver (Ag) or cadmium (Cd) affects the metal TK and TD processes of zebrafish (Danio rerio) larvae, we investigated four TK-TD model parameters that control tolerance and sensitivity to metal toxicity on the survival. Our results showed that the killing rate (k) of larvae exposed to high Cd concentrations was significantly lower following pre-exposure to 10 μg/L Cd than that of larvaenot pre-exposed. However, the k for high Ag concentrations was significantly higher in zebrafish larvae following pre-exposure to 2 μg/L Ag than in larvae not pre-exposed. In other words, a one-day pre-exposure to 2 µg/L Ag rendered the larvae more sensitive to Ag during a subsequent 4-day exposure to higher Ag concentrations, whereas a one-day pre-exposure to 10 µg/L Cd rendered the larvae more tolerance to Cd during a subsequent 4-day exposure to higher Cd concentrations. Our results further the current understanding of toxic metal tolerance mechanisms, both in TK and TD processes, and they will guide future laboratory studies to assess actual pre-exposure scenarios that occur in natural environments. Thus, our study can help reduce uncertainty in testing and improve ecological management concerning metal risk assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.111788DOI Listing

Publication Analysis

Top Keywords

metal toxicity
16
metal
9
pre-exposure
9
metal pre-exposure
8
zebrafish larvae
8
laboratory studies
8
high concentrations
8
one-day pre-exposure
8
rendered larvae
8
subsequent 4-day
8

Similar Publications

Cadmium is a non-essential element and neurotoxin that causes neuroinflammation, which leads to neurodegenerative diseases and brain cancer. To date, there are no specific or effective therapeutic agents to control inflammation and alleviate cadmium-induced progressive destruction of brain cells. Fluoroquinolones (FQs), widely used antimicrobials with effective blood-brain barrier penetration, show promise in being repurposed as anti-inflammatory drugs.

View Article and Find Full Text PDF

UV-Aged Nanoplastics Increase Mercury Toxicity in a Marine Copepod under Multigenerational Exposure: A Carrier Role.

Environ Sci Technol

January 2025

Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.

Aged plastics possess diverse interactive properties with metals compared to pristine ones. However, the role of aging for nanoplastics (NPs) in being a carrier of mercury (Hg), a common marine environmental pollutant, and their combined effects remain unclear. This study investigated the carrier effect of ultraviolet-aged NPs on Hg and the ensuing toxicity in a marine copepod under a multigenerational scenario.

View Article and Find Full Text PDF

Simultaneous Copper and EDTA Ligands Recovery from Electroless Effluent with Metallic Copper and Formaldehyde.

Environ Sci Technol

January 2025

Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.

The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.

View Article and Find Full Text PDF

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Cu-doped waste-tire carbon as catalyst for UV/HO oxidation of ofloxacin.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China. Electronic address:

Ofloxacin (OFX), commonly employed in the treatment of infectious diseases, is frequently detected in aquatic environments and poses potential ecological risks. UV/HO oxidation has been recognized as an efficient approach for removing antibiotics. In this study, Cu-doped waste-tire carbon was prepared and used as a UV/HO catalyst for the degradation of OFX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!