The benefits provided by tropical rainforests are unevenly distributed throughout the landscape and are shaped by abiotic and biotic components that influence the spatial distribution and functional traits of the species involved. We tested whether environmental stratification of the rainforest in biophysical Landscape Units (LU), defined by topography and soil, is related to the spatial distribution of diversity, abundance and productivity (standing biomass) of tree assemblages that provide potential forest products (PFP). Considering that different PFP are associated with specific plant traits, we also tested whether a phylogenetic signal exists among the species that comprise specific use categories. Non-metric multidimensional scaling ordinations and permutational analysis of variance were based on the frequency, abundance and productivity of 129 species, the PFP of which were classified as fodder, food, fuelwood, medicinal, melliferous, ornamental, plywood and timber in 15 plots of 0.5 ha each. We constructed a phylogenetic tree of the studied species and analyzed the phylogenetic signal strength (D-statistic) among them. The spatial distribution of diversity and abundance of useful species changes among the LU. Specific PFP can be provided in contrasting habitat conditions, but generally not by the same species. The PFP categories that presented a phylogenetic signal were associated with wood characteristics (fuelwood and plywood) and the palatability of the leaves and reproductive structures (fodder). The Moraceae family was significantly related to fodder and plywood, whereas Meliaceae, Myrtaceae and Sapotaceae were mostly used for fuelwood. The medicinal species presented convergent traits distributed throughout the phylogeny. However, since our study included a broad variety of plant structures, it is possible that phylogenetic dispersion can change if we consider the specific uses within each category. Our findings show that the assemblages of PFP suppliers can be clustered through biophysical units based on soil and topography, and specific categories of PFP are often supplied by phylogenetically related species. This knowledge is fundamental in order to incorporate the high diversity of tree species and their potential uses into productive reforestation and agroforestry programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.111819 | DOI Listing |
Plants (Basel)
January 2025
Key Laboratory of Efficient Forage Production Mode, Ministry of Agriculture and Rural Affair, College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China.
Grassland degradation is a serious ecological issue in the farming-pastoral ecotone of northern China. Utilizing native grasses for the restoration of degraded grasslands is an effective technological approach. is a superior indigenous grass species for grassland ecological restoration in northern China.
View Article and Find Full Text PDFPlants (Basel)
January 2025
International Education School, Gannan Normal University, Ganzhou 341000, China.
Roots play essential roles in the acquisition of water and minerals from soils in higher plants. However, water or nutrient limitation can alter plant root morphology. To clarify the spatial distribution characteristics of essential nutrients in citrus roots and the influence mechanism of micronutrient deficiency on citrus root morphology and architecture, especially the effects on lateral root (LR) growth and development, two commonly used citrus rootstocks, trifoliate orange ( L.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Faculty of Forestry, University of Sarajevo, Zmaja od Bosne 8, 71 000 Sarajevo, Bosnia and Herzegovina.
Polyploidy is a powerful mechanism driving genetic, physiological, and phenotypic changes among cytotypes of the same species across both large and small geographic scales. These changes can significantly shape population structure and increase the evolutionary and adaptation potential of cytotypes. , an edaphic steno-endemic species with a narrow distribution in the Balkan Peninsula, serves as an intriguing case study.
View Article and Find Full Text PDFPathogens
January 2025
Centre for Environmental and Marine Studies (CESAM), Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
Globally, forests are constantly threatened by a plethora of disturbances of natural and anthropogenic origin, such as climate change, forest fires, urbanization, and pollution. Besides the most common stressors, during the last few years, Portuguese forests have been impacted by severe decline phenomena caused by invasive pathogens, many of which belong to the genus . The genus includes a large number of species that are invading forest ecosystems worldwide, chiefly as a consequence of global trade and human activities.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Oceanography and Spatial Information, China University of Petroleum East China-Qingdao Campus, Qingdao 266580, China.
Salt marsh vegetation in the Yellow River Delta, including (), (), and (), is essential for the stability of wetland ecosystems. In recent years, salt marsh vegetation has experienced severe degradation, which is primarily due to invasive species and human activities. Therefore, the accurate monitoring of the spatial distribution of these vegetation types is critical for the ecological protection and restoration of the Yellow River Delta.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!