During the COVID-19 crisis, disposable N-95 filtering face piece respirators became a critical supply in many health care institutions. Infection preventionists nationwide struggled with ensuring their facilities had personal protective equipment available while utilizing crisis capacity strategies. Many facilities began using US Centers for Disease Control and Prevention and US Food and Drug Administration guidance to disinfect and reprocess N95 respirators for extended use. N95 respirators are collected for all clinical units on a scheduled basis by the sterile processing department (SPD) in individually labeled bins. Bins are checked into SPD and logged into electronic system to track mask volumes by unit. Masks are inspected by SPD team members, packaged in sterile peel packs on the decontamination side and sent to the clean side of the department. Masks are then reprocessed in the appropriate equipment based on the US Food and Drug Administration Emergency Use Authorization guidelines. The facility was able to provide a consistent method of N95 reprocessing throughout the facility. Utilizing an interdisciplinary team to include the operating room, infection preventionist, SPD, and nursing leadership to troubleshoot and identify barriers on a routine basis was key to making the program a success for the many months of the COVID-19 pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832044PMC
http://dx.doi.org/10.1016/j.ajic.2020.12.004DOI Listing

Publication Analysis

Top Keywords

n95 respirators
12
sterile processing
8
processing department
8
food drug
8
drug administration
8
process disinfection
4
n95
4
disinfection n95
4
respirators
4
respirators covid-19
4

Similar Publications

Experiencing side effects when wearing N95/P2 masks has negative impacts on health workers and increases exposure to pathogens. While side effects of wearing P2/N95 masks have been reported previously, these masks have never been used as widely as during the COVID-19 pandemic. This study examines Australian hospital nurses' experiences and perceptions of P2/N95 mask usage and its impacts on patient care at a time when P2/N95 masks were widely used.

View Article and Find Full Text PDF

Mold remediation in homes after flooding.

J Allergy Clin Immunol Pract

December 2024

Ochsner Health System, Department of Allergy/Immunology and Tulane University, School of Public Health and Tropical Medicine. Electronic address:

Flooding events, particularly those caused by hurricanes and other large storm events, are increasingly fueled by climate change. Stormwater intrusion into homes creates ideal conditions for mold growth. Homes inundated by floodwaters become vulnerable to production of mold spores, particulate matter, and volatile organic compounds, all of which trigger a variety of poor health outcomes.

View Article and Find Full Text PDF

Developing and overseeing Respiratory Protection Programs (RPPs) is crucial for ensuring effective respirator use among employees. To date, a gap exists in research that focuses on elastomeric half mask respirators (EHMRs) as the primary respirator in health delivery settings which would necessitate additional considerations in RPPs beyond the more common N95 filtering facepiece respirators. This paper presents lessons learned during a one-year impact evaluation with healthcare and first responder settings that received EHMRs from the Strategic National Stockpile in 2021 and 2022.

View Article and Find Full Text PDF

Background: Quantitative mask fit testing (QNFT) is the gold standard to confirm the correct fit of a N95/P2 mask to ensure health care workers protection from airborne viruses. Using the Occupational Safety and Health Administration (OSHA) guidance indicates a final fit test result is a cumulative score derived from manoeuvres within the OSHA protocol. The protocol-based manoeuvres mimic aspects of clinical care by health professionals and mask fit testing is conducted to provide protection from airborne viruses and pollutants within a care setting.

View Article and Find Full Text PDF

Aim: To test the reliability and construct validity of the Mask Usability Scale in healthcare students and staff.

Design: A methodological study involving repeated measures.

Methods: The study included two batches of participants: (1) 283 university nursing students and (2) 1753 participants composed of students (61%) and clinical staff (39%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!