We investigate high-valent oxygen redox in the positive Na-ion electrode P2-Na [Fe Mn ]O (NMF) where Fe is partially substituted with Cu (P2-Na [Mn Fe Cu ]O , NMFC) or Ni (P2-Na [Mn Fe Ni ]O , NMFN). From combined analysis of resonant inelastic X-ray scattering and X-ray near-edge structure with electrochemical voltage hysteresis and X-ray pair distribution function profiles, we correlate structural disorder with high-valent oxygen redox and its improvement by Ni or Cu substitution. Density of states calculations elaborate considerable anionic redox in NMF and NMFC without the widely accepted requirement of an A-O-A' local configuration in the pristine materials (where A=Na and A'=Li, Mg, vacancy, etc.). We also show that the Jahn-Teller nature of Fe and the stabilization mechanism of anionic redox could determine the extent of structural disorder in the materials. These findings shed light on the design principles in TM and anion redox for positive electrodes to improve the performance of Na-ion batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202012205 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.
High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.
View Article and Find Full Text PDFChem Asian J
January 2025
University of Queensland, School of Chemical Engineering, AUSTRALIA.
The activation mechanism of Li-rich cathode has been discussed for many years, yet there is still debate on different theories. Potassium doping can assist the investigation on activation mechanism through its unique function in terms of blocking TM migration during activation. K-doping works by occupying Li sites even after Li has been extracted, increasing stability by blocking transition metals from migrating into these sites, which can help us distinguish the pathway of activation.
View Article and Find Full Text PDFSmall
January 2025
Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
The biodegradation of organic aromatic compounds in subsurface environments is often hindered by limited dissolved oxygen. While oxygen supplementation can enhance in situ biodegradation, it poses financial and technical challenges. This study explores introducing low-oxygen concentrations in anaerobic environments for efficient contaminant removal, particularly in scenarios where coexisting pollutants are present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!