Leukemia is a liquid tumor caused by a hematopoietic stem cell malignant clone, which seriously affects the normal function of the hematopoietic system. Conventional drugs have poor therapeutic effects due to their poor specificity and stability. With the development of nanotechnology, nonviral nanoparticles bring hope for the efficient treatment of leukemia. Nanoparticles are easily modified. They can be designed to target lesion sites and control drug release. Thereby, nanoparticles can improve the effects of drugs and reduce side effects. This review mainly focuses on and summarizes the current research progress of nanoparticles to deliver different leukemia therapeutic drugs, as to demonstrate the potential of nanoparticles in leukemia treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.0c01040 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmacy, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.
View Article and Find Full Text PDFBr J Haematol
January 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.
View Article and Find Full Text PDFActa Biomater
December 2024
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China. Electronic address:
Discov Nano
December 2024
Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India.
Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-Gu Jeonju, Jeonbuk, 54896, South Korea.
This study explores the potential of vacuoles derived from Saccharomyces cerevisiae (S. cerevisiae) as a novel form of drug carrier, specifically focusing on their application in enhancing the delivery of the chemotherapeutic agent Daunorubicin (DNR). We isolated and reassembled these vacuoles, referred to as Reassembled Vacuoles (ReV), aiming to overcome the challenges of drug degradation caused by hydrolytic enzymes within traditional vacuoles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!