Identifying severe acute pancreatitis (SAP) as soon as possible is critical for achieving optimal outcomes and saving lives. In this study, a novel P-selectin-targeted, NIR fluorescent dye (Cy 5.5)-labeled dual-modal nanoprobe based on diethylenetriaminepentaacetic chelates (Gd-DTPA-Cy5.5-PsLmAb) was constructed for the bimodal imaging of SAP at the early stage. Gd-DTPA-Cy5.5-PsLmAb was prepared, and its structure was characterized by Fourier transform infrared spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy, and its stability was evaluated. Biocompatibility was evaluated by the hemolysis and cytotoxicity assays. The enzyme-linked immunosorbent assay was used to detect and evaluate the expression of P-selectin in the peripheral blood of 11 patients with acute pancreatitis (AP) and 5 healthy volunteers. The bimodal imaging ability of Gd-DTPA-Cy5.5-PsLmAb nanoprobes was evaluated via near-infrared fluorescence (NIRF) and magnetic resonance imaging (MRI) in AP animal models . Gd-DTPA-Cy5.5-PsLmAb showed low toxicity to human embryonic kidney cells (293T cells) and good blood compatibility. The P-selectin levels of humans and rats in the mild acute pancreatitis (MAP)/SAP stage were significantly higher than those in the control group and reached the highest level at the SAP stage. Furthermore, Gd-DTPA-Cy5.5-PsLmAb nanoprobes showed clear NIRF imaging of mouse pancreas at the MAP stage and SAP stage by a fluorescence signal at 6.09 × 10 and 1.95 × 10, respectively. Meanwhile, Gd-DTPA-Cy5.5-PsLmAb nanoprobes also successfully showed the T1-weighted MR signal of rat pancreas at the MAP stage, but Gd-DTPA seldom showed any signal increase at the MAP stage; Gd-DTPA-Cy5.5-PsLmAb and Gd-DTPA could show an increasing MR signal of rat pancreas at the SAP stage. Gd-DTPA-Cy5.5-PsLmAb proved to offer a stronger signal than Gd-DTPA.Our findings indicate that Gd-DTPA-Cy5.5-PsLmAb is an effective and specific MR/NIRF dual nanoprobe for bimodal imaging, providing a promising diagnostic approach for early SAP in clinic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.0c00596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!