Highly toxic chlorine gas imposes serious health risks in the workplace. The ability to on-site, real-time monitoring of instantaneous and time-weighted average (TWA) chlorine gas concentrations in a simple, sensitive, accurate, and reliable manner would be highly beneficial to improve workplace health and safety. Here, we propose and experimentally validate a gaseous chlorine detection principle based on a ,-diethyl--phenylenediamine sulfate salt/Cl colorimetric reaction-controlled membrane process to regulate the gaseous chlorine transport across a gas-permeable membrane that enables the establishment of a time-resolved analytical relationship to quantify chlorine concentration by multidata points with dramatically enhanced accuracy and reliability. A gas-permeable membrane-based portable colorimetric gaseous chlorine sensing probe (MCSP) was designed and fabricated. The MCSP embedded the proposed analytical principle that is capable of real-time continuous monitoring of the instantaneous and TWA chlorine gas concentrations within an analytical range of 0.009-2.058 mg L without the need for on-going calibration, which could be a useful analytical tool for managing the toxic chlorine gas-imposed health risks in workplaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c02997 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Feng Chia University, Taichung City, 40724, Taiwan.
The unique optical properties of perovskite quantum dots (PQDs), particularly the tunable photoluminescence (PL) across the visible spectrum, make them a promising tool for chlorinated detection. However, the correlation between the fluorescence emission shift behavior and the interface of phase transformation in PQDs has not been thoroughly explored. In this study, we synthesized CsPbBr PQDs via the hot-injection method and demonstrated their ability to detect chlorinated volatile compounds such as HCl and NaOCl through a halide exchange process between the PQDs' solid thin film and the chlorinated vapor phase.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Massachusetts, United States. Electronic address:
There is significant interest in monitoring abiotic decomposition of chlorinated solvents at contaminated sites due to large uncertainties regarding the rates of abiotic attenuation of trichloroethylene (TCE) and perchloroethylene (PCE) under field conditions. In this study, an innovative passive sampling tool was developed to quantify acetylene, a characteristic product of abiotic reduction of TCE or PCE, in groundwater. The sampling mechanism is based on the highly specific and facile click reaction between acetylene and an azide compound to form a biologically and chemically stable triazole product.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!