First Report of Fusarium commune causing Stem Rot of Tobacco (Nicotiana tabacum) in Hunan Province, China.

Plant Dis

Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Nongda Road 1, Furong District, Changsha City, Hunan Province, Changsha, China;

Published: December 2020

Tobacco (Nicotiana tabacum L.) is a leafy, annual, solanaceous plant grown commercially for its leaves. It is one of the most important cash crops in China. In April of 2020, tobacco stems in commercial tobacco fields developed a brown to dark brown rot, in the Hunan Province of China. Almost 20% of the plants were infected. Symptoms appeared as round water-soaked spots, then turned dark black and developed into brown necrotic lesions leading to the stem becoming girdled and rotted. Diseased stem tissue was cut and sterilized with 70% ethanol for 10 s, 0.1% HgCl2 for 2 min, rinsed with sterile distilled water three times, and then plated on potato dextrose agar (PDA) and incubated at 26°C in the dark. Six isolates with similar morphology were obtained. Colonies cultured on PDA have morphological characteristics of Fusarium spp. producing white to orange-white, densely aerial mycelium with magenta to dark violet pigmentation. Macroconidia were produced on carnation leaf agar plates (Xi et al. 2019), which were slightly curved, with apical and basal cells curved, and usually contained three or five septa, 25.50 to 41.50×3.55 to 5.80 μm (n=50). Microconidia were cylindrical, ovate-oblong, straight to slightly curved, aseptate and 5.80 to 13.75 × 3.10 to 4.10 μm (n=50). For molecular identification, the translation elongation factor 1-alpha (EF1-α), the largest subunit of RNA polymerase II gene sequences (RPB2) and the mitochondrial small subunit rDNA (mtSSU) of a representative isolate CZ3-5-6 were amplified using the primer pairs ef1/ef2 (O'Donnell et al. 1998), 5F2/7Cr (O'Donnell et al. 2010) and NMS1/ NMS2 (Li et al. 1994). The obtained EF1-α, RPB2 and mtSSU sequences (GenBank accession nos. MT708482, MT708483 and MW260121, respectively) were 99.70 %, 100% and 100% identical to strains of F. commune (HM057338.1 for EF1-α, KU171700.1 for RPB2 and MG846025 for mtSSU). Moreover, Fusarium-ID database searches revealed that the EF1-α and RPB2 were 100% identical to F. commune strains (FD_01140_EF-1a and FD_02411_RPB2). Based on the morphological and molecular characteristics of the representative isolate, the fungal species was identified as F. commune. Pathogenicity testing of a representative isolate was performed by inoculating tobacco plants, which were grown for 2.5 months in a sterile pot with autoclaved soil. Each tobacco stem was injected with 20 μl of conidial suspension (105 spores/ml). Plants inoculated with sterilized water served as control. The pathogenicity tests were performed twice using three replicate plants, and all plants were kept in humid chambers (80 × 50 × 80 cm) at 26°C with a 12-h photoperiod. After 10 days, dark brown necrotic symptoms around the inoculated site, similar to those observed in natural field, were developed in all inoculated plants, whereas no symptoms were observed on the control plants. The pathogenic fungus was re-isolated from symptomatic tissue and identified as F. commune but was not recovered from the control plants. Fusarium commune has been reported to cause root rot or stalk and stem rot on some plants, such as sugarcane (Wang et al. 2018), Gentiana scabra (Guan et al. 2016) and maize (Xi et al. 2019). However, to our knowledge, this is the first report of F. commune causing stem rot on tobacco in China. Identification of F. commune as a stem rot causing pathogen might provide important insights for disease diagnosis on tobacco caused by different Fusarium species. Overall, this disease might bring a threat to tobacco production, and appropriate control measures should be adopted to reduce losses in tobacco fields.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-07-20-1466-PDNDOI Listing

Publication Analysis

Top Keywords

stem rot
16
representative isolate
12
tobacco
10
plants
9
commune
8
fusarium commune
8
commune causing
8
causing stem
8
rot tobacco
8
tobacco nicotiana
8

Similar Publications

Phytophthora root and stem rot caused by () is a globally prevalent oomycete disease. The use of resistant cultivars is an effective and environmentally friendly strategy to manage this disease. It is important to understand the molecular mechanisms underlying the response of (soybean) to infection.

View Article and Find Full Text PDF

Polygonatum cyrtonema Hua (Duohua Huangjing, Asparagaceae in angiosperms) is a traditional medicinal and edible plant in China. Its rhizomes can potentially enhance immunity, reduce tumor growth and the effects of aging, improve memory, and even reduce blood sugar levels (Zhao et al. 2020).

View Article and Find Full Text PDF

Oak wilt causes severe dieback of Quercus serrata, a dominant tree species in the lowlands across Japan. This study evaluated the effects of oak wilt on the wood-inhabiting fungal community and the decay rate of deadwood using a field monitoring experiment. We analysed the fungal metabarcoding community from 1200 wood samples obtained from 120 experimental logs from three forest sites at five different time points during the initial 1.

View Article and Find Full Text PDF

spp. are soil-borne pathogens that cause damping-off and root rot diseases in many plant species such as cucumber. In the current study, the effect of dried roots-stems and leaves of (Sprengel) R.

View Article and Find Full Text PDF

Corn leaf blight and stem rot caused by are significant diseases that severely affect corn crops. Glycosyltransferases (GTs) catalyze the transfer of sugar residues to diverse receptor molecules, participating in numerous biological processes and facilitating functions ranging from structural support to signal transduction. This study identified 101 genes through functional annotation of the TZ-3 genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!