Natamycin, a Biofungicide for Managing Major Postharvest Fruit Decays of Citrus.

Plant Dis

Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521.

Published: May 2021

The antifungal polyene macrolide natamycin was evaluated as a postharvest biopesticide for citrus fruit. Aqueous spray applications with 1,000 µg/ml were moderately to highly effective against green mold incidence after inoculation but did not reduce sporulation of on infected fruit. Treatments with natamycin were significantly more effective against green mold on grapefruit and lemon than on orange and mandarin, with 92.9, 88.5, 57.5, and 60.9% reductions in decay, respectively, as compared with the control. The biofungicide was compatible with a storage fruit coating but was less effective when applied in a packing coating. However, when either fruit coating was applied following an aqueous natamycin treatment (i.e., staged applications), the incidence of decay was reduced to ≤10.7% as compared with the untreated control (with 81.9%). The incidence of sour rot of lemon and mandarin was also significantly reduced from the untreated control by natamycin (1,000 µg/ml) but propiconazole (540 µg/ml) and propiconazole + natamycin (540 + 500 µg/ml) mixtures generally were significantly more effective than natamycin alone when using a severe inoculation procedure. Experimental and commercial packingline studies demonstrated that natamycin-fludioxonil or natamycin-propiconazole mixtures applied in a storage fruit coating or as an aqueous flooder treatment were highly effective and typically resulted in a >85.0% reduction of green mold and sour rot. Resistance to natamycin has never been documented in filamentous fungi. Thus, the use of natamycin, in contrast to other registered postharvest fungicides for citrus, can be an antiresistance strategy and an effective treatment in mixtures with other fungicides for the management of major postharvest decays of citrus.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-08-20-1650-REDOI Listing

Publication Analysis

Top Keywords

green mold
12
fruit coating
12
natamycin
9
major postharvest
8
decays citrus
8
1000 µg/ml
8
highly effective
8
effective green
8
storage fruit
8
untreated control
8

Similar Publications

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.

Mycorrhiza

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.

View Article and Find Full Text PDF

Engineering yeast to produce fraxetin from ferulic acid and lignin.

Appl Microbiol Biotechnol

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Lignin, the most abundant renewable source of aromatic compounds on earth, remains underexploited in traditional biorefining. Fraxetin, a naturally occurring flavonoid, has garnered considerable attention in the scientific community due to its diverse and potent biological activities such as antimicrobial, anticancer, antioxidant, anti-inflammatory, and neurological protective actions. To enhance the green and value-added utilization of lignin, Saccharomyces cerevisiae was engineered as a cell factory to transform lignin derivatives to produce fraxetin.

View Article and Find Full Text PDF

Unlabelled: Once considered rare in eukaryotes, polycistronic mRNA expression has been identified in kinetoplastids and, more recently, green algae, red algae, and certain fungi. This study provides comprehensive evidence supporting the existence of polycistronic mRNA expression in the apicomplexan parasite . Leveraging long-read RNA-seq data from different parasite strains and using multiple long-read technologies, we demonstrate the existence of defined polycistronic transcripts containing 2-4 protein encoding genes, several validated with RT-PCR.

View Article and Find Full Text PDF

The fungal genus Fusarium is a treasure-trove of structurally diverse secondary metabolites, contributed greatly by marine-derived strains. A new cedrane sesquiterpene, fusacedrol (1), and a new fusarin member, fusarin M (2), were isolated from F. graminearum 12Ⅱ2N that was isolated as an endophyte from the marine brown alga Sargassum sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!