We investigated the anti-Kasha photochemistry and anti-Kasha emission of d-metal donor-acceptor dithiolene with femtosecond UV-vis transient absorption spectroscopy and molecular modeling. Experimentally, we found a lifetime of 1.4 ps for higher excited states, which is exceptionally long when compared to typical values for internal conversion (IC) (10 s of fs or less). Consequently, a substantial emission originates from the second excited state. Molecular modeling suggests this to be a consequence of the spatially separated molecular orbitals of the first and second excited states, which gives a charge transfer character to the IC. More surprisingly, we found that the inherent flexibility of the molecule allows the metal complex to access different configurations depending on the photoexcited state. We believe that this unique manifestation of anti-Kasha photoinduced conformational isomerization is facilitated by the exceptionally long lifetime of the second excited state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.0c07794DOI Listing

Publication Analysis

Top Keywords

second excited
12
metal complex
8
molecular modeling
8
excited states
8
exceptionally long
8
excited state
8
anti-kasha
4
anti-kasha conformational
4
conformational photoisomerization
4
photoisomerization heteroleptic
4

Similar Publications

We report a comprehensive investigation of the photophysical properties of Hoechst 33258 (HOE) embedded in polyvinyl alcohol (PVA) films. HOE displays a bright, highly polarized, blue fluorescence emission centered at 430 nm, indicating effective immobilization within the polymer matrix of PVA. Its fluorescence quantum yield is notably high (~0.

View Article and Find Full Text PDF

Nanosheet-shaped WS/ICG nanocomposite for photodynamic/photothermal synergistic bacterial clearance and cutaneous regeneration on infectious wounds.

Biomater Adv

January 2025

Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China. Electronic address:

Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy.

View Article and Find Full Text PDF

Neuroprotective Effects, Mechanisms of Action and Therapeutic Potential of the Kv7/KCNQ Channel Opener QO-83 in Ischemic Stroke.

Transl Stroke Res

January 2025

Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.

Ischemic stroke is a worldwide disease with high mortality and morbidity. Kv7/KCNQ channels are key modulators of neuronal excitability and microglia function, and activation of Kv7/KCNQ channels has emerged as a potential therapeutic avenue for ischemic stroke. In the present study, we focused on a new Kv7/KCNQ channel opener QO-83 on the stroke outcomes and its therapeutic potential.

View Article and Find Full Text PDF

Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts.

View Article and Find Full Text PDF

Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!