Explicit Gain Equations for Hybrid Graphene-Quantum-Dot Photodetectors.

Small

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.

Published: January 2021

Graphene is an attractive material for broadband photodetection but suffers from weak light absorption. Coating graphene with quantum dots can significantly enhance light absorption and create extraordinarily high photogain. This high gain is often explained by the classical gain theory which is unfortunately an implicit function and may even be questionable. In this work, explicit gain equations for hybrid graphene-quantum-dot photodetectors are derived. Because of the work function mismatch, lead sulfide quantum dots coated on graphene will form a surface depletion region near the interface of quantum dots and graphene. Light illumination narrows down the surface depletion region, creating a photovoltage that gates the graphene. As a result, high photogain in graphene is observed. The explicit gain equations are derived from the theoretical gate transfer characteristics of graphene and the correlation of the photovoltage with the light illumination intensity. The derived explicit gain equations fit well with the experimental data, from which physical parameters are extracted.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202006307DOI Listing

Publication Analysis

Top Keywords

explicit gain
16
gain equations
16
quantum dots
12
equations hybrid
8
hybrid graphene-quantum-dot
8
graphene-quantum-dot photodetectors
8
light absorption
8
high photogain
8
surface depletion
8
depletion region
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!