Biodegradable carboxymethyl cellulose based material for sustainable packaging application.

Sci Rep

Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Published: December 2020

The main goal of the present work was to develop a value-added product of biodegradable material for sustainable packaging. The use of agriculture waste-derived carboxymethyl cellulose (CMC) mainly is to reduce the cost involved in the development of the film, at present commercially available CMS is costly. The main focus of the research is to translate the agricultural waste-derived CMC to useful biodegradable polymer suitable for packaging material. During this process CMC was extracted from the agricultural waste mainly sugar cane bagasse and the blends were prepared using CMC (waste derived), gelatin, agar and varied concentrations of glycerol; 1.5% (sample A), 2% (sample B), and 2.5% (sample C) was added. Thus, the film derived from the sample C (gelatin + CMC + agar) with 2.0% glycerol as a plasticizer exhibited excellent properties than other samples A and B. The physiochemical properties of each developed biodegradable plastics (sample A, B, C) were characterized using Fourier Transform Infra-Red (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA). The swelling test, solubility in different solvents, oil permeability coefficient, water permeability (WP), mechanical strength of the produced material was claimed to be a good material for packaging and meanwhile its biodegradability (soil burial method) indicated their environmental compatibility nature and commercial properties. The reflected work is a novel approach, and which is vital in the conversion of organic waste to value-added product development. There is also another way to utilize commercial CMC in preparation of polymeric blends for the packaging material, which can save considerable time involved in the recovery of CMC from sugarcane bagasse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738677PMC
http://dx.doi.org/10.1038/s41598-020-78912-zDOI Listing

Publication Analysis

Top Keywords

carboxymethyl cellulose
8
material sustainable
8
sustainable packaging
8
value-added product
8
packaging material
8
material
6
cmc
6
packaging
5
sample
5
biodegradable
4

Similar Publications

The use of mesh repair is a frequently employed technique in the clinical management of abdominal wall defects. However, for intraperitoneal onlay mesh (IPOM), the traditional mesh requires additional fixation methods, and these severely limit its application in the repair of abdominal wall defects. We drew inspiration from the adhesion properties of mussels for the present study, functionalized carboxymethyl cellulose (CMC) with dopamine (DA), and added polyvinyl alcohol (PVA) to the composite to further improve the wet adhesive ability of hydrogels.

View Article and Find Full Text PDF

The global scarcity of irrigation-grade water poses severe concerns in the agricultural sector. Desalination techniques including reverse osmosis, electrodialysis, capacitive deionization, membrane filtration, and multi-stage flash are some dynamic solutions to mitigate this challenge. In this study, novel bio-filter materials were explored and developed for the application of membrane-based electrodialysis.

View Article and Find Full Text PDF

Proteins can be rapidly prototyped with cell-free expression (CFE) but in most cases there is a lack of probes or assays to measure their function directly in the cell lysate, thereby limiting the throughput of these screens. Increased throughput is needed to build standardized, sequence to function data sets to feed machine learning guided protein optimization. Herein, we describe the use of fluorescent single-walled carbon nanotubes (SWCNT) as effective probes for measuring protease activity directly in cell-free lysate.

View Article and Find Full Text PDF

Metabolic syndrome is, in humans, associated with alterations in the composition and localization of the intestinal microbiota, including encroachment of bacteria within the colon's inner mucus layer. Possible promoters of these events include dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), which, in mice, result in altered microbiota composition, encroachment, low-grade inflammation and metabolic syndrome. While assessments of gut microbiota composition have largely focused on fecal/luminal samples, we hypothesize an outsized role for changes in mucus microbiota in driving low-grade inflammation and its consequences.

View Article and Find Full Text PDF

ROS-responsive nanocarrier for oral delivery of monascin and enhanced alleviation of oxidative stress.

J Biosci Bioeng

January 2025

Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China; Shantou Key Laboratory of Marine Microbial Resources and Interactions with Environment, Shantou University, Shantou 515063, China. Electronic address:

Oxidative stress, caused by excessive production of reactive oxygen species (ROS), plays a crucial role in the occurrence and development of various diseases. Monascin can scavenge ROS and alleviate oxidative stress but with a low fermentation rate and bioavailability. Here, we optimized the fermentation process to increase the production of monascin (508.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!