Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: While enrichment of terminologies can be achieved in different ways, filling gaps in the IS-A hierarchy backbone of a terminology appears especially promising. To avoid difficult manual inspection, we started a research program in 2014, investigating terminology densities, where the comparison of terminologies leads to the algorithmic discovery of potentially missing concepts in a target terminology. While candidate concepts have to be approved for import by an expert, the human effort is greatly reduced by algorithmic generation of candidates. In previous studies, a single source terminology was used with one target terminology.
Methods: In this paper, we are extending the algorithmic detection of "candidate concepts for import" from one source terminology to two source terminologies used in tandem. We show that the combination of two source terminologies relative to one target terminology leads to the discovery of candidate concepts for import that could not be found with the same "reliability" when comparing one source terminology alone to the target terminology. We investigate which triples of UMLS terminologies can be gainfully used for the described purpose and how many candidate concepts can be found for each individual triple of terminologies.
Results: The analysis revealed a specific configuration of concepts, overlapping two source and one target terminology, for which we coined the name "fire ladder" pattern. The three terminologies in this pattern are tied together by a kind of "transitivity." We provide a quantitative analysis of the discovered fire ladder patterns and we report on the inter-rater agreement concerning the decision of importing candidate concepts from source terminologies into the target terminology. We algorithmically identified 55 instances of the fire ladder pattern and two domain experts agreed on import for 39 instances. In total, 48 concepts were approved by at least one expert. In addition, 105 import candidate concepts from a single source terminology into the target terminology were also detected, as a "beneficial side-effect" of this method, increasing the cardinality of the result.
Conclusion: We showed that pairs of biomedical source terminologies can be transitively chained to suggest possible imports of concepts into a target terminology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737255 | PMC |
http://dx.doi.org/10.1186/s12911-020-01290-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!