Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.34782 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!