A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

HI-Light: A Glass-Waveguide-Based "Shell-and-Tube" Photothermal Reactor Platform for Converting CO to Fuels. | LitMetric

In this work, we introduce HI-Light, a surface-engineered glass-waveguide-based "shell-and-tube" type photothermal reactor which is both scalable in diameter and length. We examine the effect of temperature, light irradiation, and residence time on its photo-thermocatalytic performance for CO hydrogenation to form CO, with a cubic phase defect-laden indium oxide, In2O3-x(OH)y, catalyst. We demonstrate the light enhancement effect under a variety of reaction conditions. Notably, the light-on performance for the cubic nanocrystal photocatalyst exhibits a CO evolution rate at 15.40 mmol g hr at 300°C and atmospheric pressure. This is 20 times higher conversion rate per unit catalyst mass per unit time beyond previously reported In2O3-x(OH)y catalyst in the cubic form under comparable operation conditions and more than 5 times higher than that of its rhombohedral polymorph. This result underscores that improvement in photo-thermocatalytic reactor design enables uniform light distribution and better reactant/catalyst mixing, thus significantly improving catalyst utilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725935PMC
http://dx.doi.org/10.1016/j.isci.2020.101856DOI Listing

Publication Analysis

Top Keywords

glass-waveguide-based "shell-and-tube"
8
photothermal reactor
8
in2o3-xohy catalyst
8
times higher
8
hi-light glass-waveguide-based
4
"shell-and-tube" photothermal
4
reactor platform
4
platform converting
4
converting fuels
4
fuels work
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!