Aluminum pigments were coated with FeO and CuO by solution-based thermal decomposition of the urea nitrate compounds hexakisureairon(III)nitrate and tetrakisureacopper(II)nitrate. The deposition process was optimized to obtain homogeneously coated aluminum pigments. The growth of the surface coatings was controlled by investigation with scanning electron microscopy, energy dispersive X-ray spectroscopy and static light scattering as well as infrared, X-ray diffraction and thermogravimetric analysis. The iron precursor showed an incomplete decomposition in solution, incorporating traces of urea molecules inside the coatings while the copper precursor showed complete dissociation accompanied by in situ formation of amine complexes. The amount of organic residues resulting from ligand fragments in the final oxide coatings could be reduced to 22 % for the iron oxide and 12 % for the copper oxide by further temperature treatment in solution (259 °C). Colorimetric investigations of the obtained pigments revealed an excellent hiding power, outperforming the pigments used in current state-of-the-art formulations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726677 | PMC |
http://dx.doi.org/10.1002/open.202000223 | DOI Listing |
Anal Methods
November 2017
Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.
Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.
Wounds that are not properly managed can cause complications. Prompt and proper care is essential, to prevent microbial infection. Growing interest in metal oxide nanoparticles (NPs) for innovative wound treatments targeting healing and microbial infections.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Dakahlia, Egypt.
Lung inflammation is a hallmark of several respiratory diseases. Despite the great effectiveness of the synthetic antiinflammatory agents, they cause potential side effects. Polydatin (PD), a natural phytomedicine, has antioxidant and antiinflammatory effects.
View Article and Find Full Text PDFFood Sci Technol Int
January 2025
Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran.
In the present study, the effects of psyllium gum/sodium-alginate (PG/SA) coatings incorporated with essential oil (HEO) and copper oxide nanoparticles (CuO NPs) on various properties of silver carp fillets were investigated and monitored over 15 days of chilled storage condition (4 °C ± 1). The control sample (uncoated), PG/SA with 3% CuO NPs, PG/SA with 1% HEO, and PG/SA with 3% CuO NPs and 1% HEO (PG/SA-HC) were examined through chemical, microbial, and sensory analysis. The results revealed that the PG/SA-HC sample after 15 days of refrigeration demonstrated a significantly lower value than the others for total viable counts (8.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, State University of Maringá, Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites, Federal University of Technology - Paraná, Apucarana, PR, Brazil; National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, USA. Electronic address:
Polyelectrolyte multilayers (PEMs) based on hyaluronic acid (HA) and poly (diallyldimethylammonium chloride) (PDDA) were deposited on oxidized polystyrene (PS) via the layer-by-layer (LbL) method. The X-ray photoelectron spectroscopy (XPS) confirmed the PEM deposition on PS, and atomic force microscopy (AFM) indicated that the surface roughness of PS also increased after PEM deposition. The PEMs significantly enhanced PS wettability, reducing the contact angle from 73° on PS to 24° on PDDA-terminated (PDDA/HA) PEM (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!