The World Health Organization (WHO) declared the coronavirus disease of 2019 (COVID-19) as a pandemic due to its widespread global infection. This has resulted in lockdown under different phases in many nations, including India, around the globe. In the present study, we report the impact of aerosols on surface ozone in the context of pre-lockdown (01 - 24th March 2020 (PLD)), lockdown phase1 (25th March to 14th April 2020 (LDP1)), and lockdown phase 2 (15th April to 03 May 2020 (LDP2)) on clear days at a semi-arid site, Anantapur in southern India using both in situ observations and model simulations. Collocated measurements of surface ozone (O), aerosol optical depth (AOD), black carbon mass concentration (BC), total columnar ozone (TCO), solar radiation (SR), and ultraviolet radiation (UV-A) data were collected using an Ozone analyzer, MICROTOPS sunphotometer, Ozonometer, Aethalometer, and net radiometer during the study period. The diurnal variations of O and BC exhibited an opposite trend during three phases. The concentrations of ozone were ~10.7% higher during LDP1 (44.8 ± 5.2 ppbv) than the PLD (40.5 ± 6.0 ppbv), which mainly due to an unprecedented reduction in NOx emissions leading to a lower O titration by NO. The prominent increase in the surface zone during LDP1 is reasonably consistent with the observed photolysis frequencies (j (OD)) through Tropospheric Ultraviolet and Visible (TUV) model. The results show that a pronounced spectral and temporal variability in the AOD during three lockdown phases is mainly due to distinct aerosol sources. The increase in AOD during LDP2 due to long-range transport can bring large amounts of mineral dust and smoke aerosols from the west Asian region and central India, and which is reasonably consistent with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts analysis over the measurement location. Overall, a drastic reduction in BC concentration (~8.4%) and AOD (10.8%) were observed in the semi-arid area during LDP1 with correspondence to PLD. The columnar aerosol size distributions retrieved from the spectral AODs followed power-law plus unimodal during three phases. The absorption angstrom exponent (AAE) analysis reveals a predominant contribution to the BC from biomass burning activities during the lockdown period over the measurement location.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724289 | PMC |
http://dx.doi.org/10.1016/j.jastp.2020.105491 | DOI Listing |
Sci Rep
January 2025
Department of Food Toxicology and Contaminant, National Research Centre, Dokki, Giza, Egypt.
This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.
View Article and Find Full Text PDFSci Rep
January 2025
College of New Energy and Environment, Jilin University, Changchun, 130012, China.
Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:
Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Lithium-sulfur (Li-S) batteries, with their superior energy densities, are emerging as promising successors to conventional lithium-ion batteries. However, their widespread adoption is hindered by challenges such as the shuttle effect of polysulfides, which affects discharge capacity and cycling stability. This study explores the transformative potential of atomic layer deposition (ALD) of AlO on commercial PP/PE/PP separators (Celgard), combined with the use of UV ozone exposure to enhance ALD nucleation on the separator surface, to address these challenges.
View Article and Find Full Text PDFNPJ Clim Atmos Sci
January 2025
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA.
Climate change poses direct and indirect threats to public health, including exacerbating air pollution. However, the influence of rising temperature on air quality remains highly uncertain in the United States, particularly under rapid reduction in anthropogenic emissions. Here, we examined the sensitivity of surface-level fine particulate matter (PM) and ozone (O) to summer temperature anomalies in the contiguous US as well as their decadal changes using high-resolution datasets generated by machine learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!