Oxidative stress is a hallmark of secondary injury associated with spinal cord injury. Identifying stable and specific oxidative biomarkers is of important significance for studying spinal cord injury-associated secondary injury. Mature erythrocytes do not contain nuclei and mitochondria and cannot be transcribed and translated. Therefore, mature erythrocytes are highly sensitive to oxidative stress and may become a valuable biomarker. In the present study, we revealed the proteome dynamics of protein expression in erythrocytes of beagle dogs in the acute and subacute phases of spinal cord injury using mass spectrometry-based approaches. We found 26 proteins that were differentially expressed in the acute (0-3 days) and subacute (7-21 days) phases of spinal cord injury. Bioinformatics analysis revealed that these differentially expressed proteins were involved in glutathione metabolism, lipid metabolism, and pentose phosphate and other oxidative stress pathways. Western blot assays validated the differential expression of glutathione synthetase, transaldolase, and myeloperoxidase. This result was consistent with mass spectrometry results, suggesting that erythrocytes can be used as a novel sample source of biological markers of oxidative stress in spinal cord injury. Glutathione synthetase, transaldolase, and myeloperoxidase sourced from erythrocytes are potential biomarkers of oxidative stress after spinal cord injury. This study was approved by the Experimental Animal Centre of Ningxia Medical University, China (approval No. 2017-073) on February 13, 2017.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284302 | PMC |
http://dx.doi.org/10.4103/1673-5374.301487 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College (PUMC) and Chinese Academy of Medical Science (CAMS), Beijing, China.
Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.
View Article and Find Full Text PDFBMC Med Educ
January 2025
Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).
View Article and Find Full Text PDFBMC Neurol
January 2025
Faculty of Medicine, Department of Neurology, Al-Quds University, Jerusalem, Palestine.
Background: Vanishing white matter disease (VWMD) is a rare autosomal recessive leukoencephalopathy. It is typified by a gradual loss of white matter in the brain and spinal cord, which results in impairments in vision and hearing, cerebellar ataxia, muscular weakness, stiffness, seizures, and dysarthria cogitative decline. Many reports involve minors.
View Article and Find Full Text PDFJ Pediatr Urol
January 2025
Department of Women and Children's Health, School of Life Course Sciences, Kings College London, London, UK; Children's Bladder Service, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
Introduction: The Mirabegron-anticholinergic (MAC) combination has proven effective as a step-up strategy in managing paediatric neurogenic bladder following anticholinergic medication and botulinum toxin (BTX) therapy. This study assesses the long-term efficacy of MAC in children with neurogenic bladder.
Patients And Methods: A retrospective chart review was conducted from 2015 to 2023, including consecutive paediatric patients receiving Mirabegron (25/50 mg) with an anticholinergic agent (solifenacin 16, tolterodine 7, oxybutynin 7, trospium 1).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!