Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale And Objectives: Computer-aided methods have been widely applied to diagnose lesions on breast magnetic resonance imaging (MRI). The first step was to identify abnormal areas. A deep learning Mask Regional Convolutional Neural Network (R-CNN) was implemented to search the entire set of images and detect suspicious lesions.
Materials And Methods: Two DCE-MRI datasets were used, 241 patients acquired using non-fat-sat sequence for training, and 98 patients acquired using fat-sat sequence for testing. All patients have confirmed unilateral mass cancers. The tumor was segmented using fuzzy c-means clustering algorithm to serve as the ground truth. Mask R-CNN was implemented with ResNet-101 as the backbone. The neural network output the bounding boxes and the segmented tumor for evaluation using the Dice Similarity Coefficient (DSC). The detection performance, and the trade-off between sensitivity and specificity, was analyzed using free response receiver operating characteristic.
Results: When the precontrast and subtraction image of both breasts were used as input, the false positive from the heart and normal parenchymal enhancements could be minimized. The training set had 1469 positive slices (containing lesion) and 9135 negative slices. In 10-fold cross-validation, the mean accuracy = 0.86 and DSC = 0.82. The testing dataset had 1568 positive and 7264 negative slices, with accuracy = 0.75 and DSC = 0.79. When the obtained per-slice results were combined, 240 of 241 (99.5%) lesions in the training and 98 of 98 (100%) lesions in the testing datasets were identified.
Conclusion: Deep learning using Mask R-CNN provided a feasible method to search breast MRI, localize, and segment lesions. This may be integrated with other artificial intelligence algorithms to develop a fully automatic breast MRI diagnostic system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192591 | PMC |
http://dx.doi.org/10.1016/j.acra.2020.12.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!