Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticle-structuring aimed at the acetic acid (A) transporter on intestinal epithelial cells and tumor cells is a new potential strategy to enhance oral bioavailability and anti-tumor efficacy. In this study, chitosan (CS) was modified with hydrophilic A and hydrophobic lipoic acid (L), to produce ACSL. A novel ACSL-modified multifunctional liposomes (Lip) loaded with docetaxel (DTX; DTX-ACSL-Lip) was then prepared and characterized. DTX-ACSL-Lip recorded higher pH sensitivity and slower release than DTX-Lip and showed dithiothreitol (DTT) response release. DTX-ACSL-Lip uptake by Caco-2 cells was also significantly enhanced mainly viaA transporters compared with DTX-Lip. ACSL modification of DTX-Lip also improved oral bioavailability by 10.70-folds, with a 3.45-fold increase in C and a 1.19-fold prolongation in retention time of DTX in the blood. Moreover, the grafting degree of A significantly affected cell uptake and oral bioavailability. They also showed a significant (1.33-fold) increase in drug intratumoral distribution, as well as an increase in tumor growth inhibition rate from 54.34% to 87.51% without weight loss, compared with DTX-Lip. Therefore, modification of DTX-Lip with ACSL can significantly enhance the oral bioavailability and anti-tumor efficacy of DTX without obvious toxicity, confirming the potential of the dual strategy of targeting A transporter and controlled drug release in tumor cells in oral therapy of tumor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111499 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!